Org Biomol Chem
January 2024
Imines are a versatile class of chemicals with applications in pharmaceuticals and as synthetic intermediates. While imines are conventionally synthesized aldehyde-amine condensation, their direct preparation from amines can avoid the need for the independent preparation of the aldehyde coupling partner and associated constraints with regard to aldehyde storage and purification. The direct preparation of imines from amines typically utilizes transition metal catalysis and is often well-aligned with green chemistry principles.
View Article and Find Full Text PDFThe breadth of utility of a commercially available and stable strong Lewis acid catalyst, tris(pentafluorophenyl)borane, has been explored, highlighting its use towards a wide range of unique siloxane products and their corresponding applications. This article focuses on the variety of different outcomes that this impressive borane offers in controlled and selective manners by the variation of reaction conditions, precursor functionalities, reagent or catalyst loading, and the mechanistic considerations that contribute. With a predominant focus on the Piers-Rubinsztajn reaction and its modifications, tris(pentaflurophenyl)borane's utility is highlighted in the synthesis of linear, cyclic and macrocyclic siloxanes, aryl-/alkoxysiloxanes, and other bespoke products.
View Article and Find Full Text PDFStructural isomers of naphthalene-bridged disilanes were prepared catalytic intramolecular dehydrocoupling of disilyl precursors using Wilkinson's catalyst. Interestingly, it was observed that interchanging the side groups on the silicon atoms altered the photophysical properties of the bridged disilanes. Herein, we report the first example of naphthalene bridged disilanes forming excimers in non-polar solvents.
View Article and Find Full Text PDFThis article highlights recent discoveries within the field of polysulfides which are created from waste sulfur through inverse vulcanisation. Due to the current environmental climate, making materials from renewable resources or industrial waste is highly desirable. Sulfur is an impurity refined out of petroleum and gas reserves at a rate of more than 70 million tonnes a year and is currently used in the rubber, fertiliser and chemical industries.
View Article and Find Full Text PDFThis review covers the main synthetic routes to and the corresponding mechanisms of phosphoramidate formation. The synthetic routes can be separated into six categories: salt elimination, oxidative cross-coupling, azide, reduction, hydrophosphinylation, and phosphoramidate-aldehyde-dienophile (PAD). Examples of some important compounds synthesized through these routes are provided.
View Article and Find Full Text PDFThe utility of (CF)B(OH) as catalyst for the simple and environmentally benign synthesis of oligosiloxanes directly from hydrosilanes, is reported. This protocol offers several advantages compared to other methods of synthesizing siloxanes, such as mild reaction conditions, low catalyst loading, and a short reaction time with high yields and purity. The considerable HO-tolerance of (CF)B(OH) promoted a catalytic route to disiloxanes which showed >99% conversion of three tertiary silanes, EtSiH, PhMeSiH, and PhSiH.
View Article and Find Full Text PDFSynthesis of naphthalene bridged disilanes 2 (R = Me, Ph) was performed via catalytic dehydrocoupling. Using RhCl(PPh) as a catalyst, an intramolecular Si-Si bond was readily formed from the corresponding disilyl precursors 1 (R = Me, Ph). For catalytic reactions using (CF)B(OH), bridged siloxanes (3 and 3) were observed.
View Article and Find Full Text PDFLiving crystallization-driven self-assembly (CDSA) is a seeded growth method for crystallizable block copolymers (BCPs) and related amphiphiles in solution and has recently emerged as a highly promising and versatile route to uniform core-shell nanoparticles (micelles) with control of dimensions and architecture. However, the factors that influence the rate of nanoparticle growth have not been systematically studied. Using transmission electron microscopy, small- and wide-angle X-ray scattering, and super-resolution fluorescence microscopy techniques, we have investigated the kinetics of the seeded growth of poly(ferrocenyldimethylsilane)- b-(polydimethylsiloxane) (PFS- b-PDMS), as a model living CDSA system for those employing, for example, crystallizable emissive and biocompatible polymers.
View Article and Find Full Text PDFAlthough the dehydrogenation chemistry of amine-boranes substituted at nitrogen has attracted considerable attention, much less is known about the reactivity of their B-substituted analogues. When the B-methylated amine-borane adducts, RR'NH·BH2Me (1a: R = R' = H; 1b: R = Me, R' = H; 1c: R = R' = Me; 1d: R = R' = iPr), were heated to 70 °C in solution (THF or toluene), redistribution reactions were observed involving the apparent scrambling of the methyl and hydrogen substituents on boron to afford a mixture of the species RR'NH·BH3-xMex (x = 0-3). These reactions were postulated to arise via amine-borane dissociation followed by the reversible formation of diborane intermediates and adduct reformation.
View Article and Find Full Text PDFAnalytical methods that enable visualization of nanomaterials derived from solution self-assembly processes in organic solvents are highly desirable. Herein, we demonstrate the use of stimulated emission depletion microscopy (STED) and single molecule localization microscopy (SMLM) to map living crystallization-driven block copolymer (BCP) self-assembly in organic media at the sub-diffraction scale. Four different dyes were successfully used for single-colour super-resolution imaging of the BCP nanostructures allowing micelle length distributions to be determined in situ.
View Article and Find Full Text PDFA detailed catalytic, stoichiometric, and mechanistic study on the dehydrocoupling of H3B·NMe2H and dehydropolymerization of H3B·NMeH2 using the [Rh(Xantphos)](+) fragment is reported. At 0.2 mol % catalyst loadings, dehydrocoupling produces dimeric [H2B-NMe2]2 and poly(methylaminoborane) (M(n) = 22,700 g mol(-1), PDI = 2.
View Article and Find Full Text PDFCatalytic reactions that enable the formation of new bonds to carbon centres play a pervasive role in the state-of-the-art synthesis of organic molecules and macromolecules. In contrast, the development of analogous processes as routes to main group compounds and materials has been much slower. Nevertheless, recent advances have led to a broad expansion of this field and now allow access to a wide range of catenated structures based on elements across the p block.
View Article and Find Full Text PDFThe reaction of N-heterocyclic carbenes with polyaminoboranes [MeNH-BH2]n or [NH2-BH2]n at 20 °C led to depolymerisation and the formation of labile, monomeric aminoborane-NHC adducts, RNH-BH2-NHC (R = Me or H); a similar NHC adduct of Ph2N=BCl2 was characterized by single crystal X-ray diffraction.
View Article and Find Full Text PDFLinear diborazanes R3N-BH2-NR2-BH3 (R = alkyl or H) are often implicated as key intermediates in the dehydrocoupling/dehydrogenation of amine-boranes to form oligo- and polyaminoboranes. Here we report detailed studies of the reactivity of three related examples: Me3N-BH2-NMe2-BH3 (1), Me3N-BH2-NHMe-BH3 (2), and MeNH2-BH2-NHMe-BH3 (3). The mechanisms of the thermal and catalytic redistributions of 1 were investigated in depth using temporal-concentration studies, deuterium labeling, and DFT calculations.
View Article and Find Full Text PDFThe kinetics of the metal-free hydrogen transfer from amine-borane Me(2)NH·BH(3) to aminoborane iPr(2)N═BH(2), yielding iPr(2)NH·BH(3) and cyclodiborazane [Me(2)N-BH(2)](2) via transient Me(2)N═BH(2), have been investigated in detail, with further information derived from isotopic labeling and DFT computations. The approach of the system toward equilibrium was monitored in both directions by (11)B{(1)H} NMR spectroscopy in a range of solvents and at variable temperatures in THF. Simulation of the resulting temporal-concentration data according to a simple two-stage hydrogen transfer/dimerization process yielded the rate constants and thermodynamic parameters attending both equilibria.
View Article and Find Full Text PDFIr-catalyzed (20 °C) or thermal (70 °C) dehydrocoupling of the linear diborazane MeNH(2)-BH(2)-NHMe-BH(3) led to the formation of poly- or oligoaminoboranes [MeNH-BH(2)](x) (x = 3 to >1000) via an initial redistribution process that forms MeNH(2)·BH(3) and also transient MeNH═BH(2), which exists in the predominantly metal-bound and free forms, respectively. Studies of analogous chemistry led to the discovery of metal-free hydrogenation of the B═N bond in the "model" aminoborane iPr(2)N═BH(2) to give iPr(2)NH·BH(3) upon treatment with the diborazane Me(3)N-BH(2)-NHMe-BH(3) or amine-boranes RR'NH·BH(3) (R, R' = H or Me).
View Article and Find Full Text PDFDimeric tetraalkyldistannoxanes are have been reported to catalyze esterification reactions, but are difficult to investigate in detail due to the lack of suitable spectroscopic handles. Electrospray ionization mass spectrometry (ESI-MS), in conjunction with a tethered charge on a tin atom, reveals that immediate decomposition to mono-tin carboxylate compounds occurs in the presence of carboxylic acid.
View Article and Find Full Text PDFInitiation processes in a family of ruthenium phosphonium alkylidene catalysts, some of which are commercially available, are presented. Seven 16-electron zwitterionic catalyst precursors of general formula (H(2)IMes)(Cl)(3)Ru=C(H)P(R(1))(2)R(2) (R(1) = R(2) = C(6)H(11), C(5)H(9), i-C(3)H(7), 1-Cy(3)-Cl, 1-Cyp(3)-Cl, 1-(i)Pr(3)-Cl; R(1) = C(6)H(11), R(2) = CH(2)CH(3), 1-EtCy(2)-Cl; R(1) = C(6)H(11), R(2) = CH(3), 1-MeCy(2)-Cl; R(1) = i-C(3)H(7), R(2) = CH(2)CH(3), 1-Et(i)Pr(2)-Cl; R(1) = i-C(3)H(7), R(2) = CH(3), 1-Me(i)Pr(2)-Cl) were prepared. These compounds can be converted to the metathesis active 14-electron phosphonium alkylidenes by chloride abstraction with B(C(6)F(5))(3).
View Article and Find Full Text PDFThe four-coordinate ruthenium phosphonium alkylidenes 1-Cy and 1-iPr, differing in the substituent on the phosphorus center, were observed to decompose thermally in the presence of 1,1-dichloroethylene to produce [H(3)CPR(3)][Cl]. The major ruthenium-containing product was a trichloro-bridged ruthenium dimer that incorporates the elements of the 1,1-dichloroethylene as a dichlorocarbene ligand and a styrenic vinyl group on the supporting NHC ligand. Spectroscopic, kinetic, and deuterium-labeling experiments probed the mechanism of this process, which involves a rate-limiting C-H activation of an NHC mesityl ortho methyl group.
View Article and Find Full Text PDF