Electronic cigarettes are essentially electronic nicotine delivery systems (ENDS). Use of ENDS has increased sharply in the United States in recent years, particularly among youth. We reviewed the literature on ENDS use, based on a PubMed search, with a focus on effects that could influence anesthetic and surgical outcomes.
View Article and Find Full Text PDFUnlabelled: Adeno-associated virus 2 (AAV2) and adenovirus 5 (Ad5) are promising gene therapy vectors. Both display liver tropism and are currently thought to enter hepatocytes in vivo through cell surface heparan sulfate proteoglycans (HSPGs). To test directly this hypothesis, we created mice that lack Ext1, an enzyme required for heparan sulfate biosynthesis, in hepatocytes.
View Article and Find Full Text PDFElevated nonfasting TG-rich lipoprotein levels are a risk factor for CVD. To further evaluate the relevance of LDL-receptor (LDLr) pathway and heparan sulfate proteoglycans (HSPGs) in TG homeostasis, we analyzed fasting and postprandial TG levels in mice bearing combined heterozygous mutations in both Exostosin (Ext) 1 and Ldlr, in subjects with hereditary multiple exostosis (HME) due to a heterozygous loss-of-function mutation in EXT1 or EXT2 (N = 13), and in patients with heterozygous mutations in LDLR [familial hypercholesterolemia (FH)] and SNPs in major HSPG-related genes (n = 22). Mice bearing a homozygous mutation in hepatic Ext1 exhibited elevated plasma TGs similar to mice lacking other key enzymes involved in HSPG assembly.
View Article and Find Full Text PDFHeparan sulfate proteoglycans (HSPGs) are an important constituent of the macrophage glycocalyx and extracellular microenvironment. To examine their role in atherogenesis, we inactivated the biosynthetic gene N-acetylglucosamine N-deacetylase-N-sulfotransferase 1 (Ndst1) in macrophages and crossbred the strain to Ldlr(-/-) mice. When placed on an atherogenic diet, Ldlr(-/-)Ndst1(f/f)LysMCre(+) mice had increased atherosclerotic plaque area and volume compared to Ldlr(-/-) mice.
View Article and Find Full Text PDFObjective: Chylomicron and very low-density lipoprotein remnants are cleared from the circulation in the liver by heparan sulfate proteoglycan (HSPG) receptors (syndecan-1), the low-density lipoprotein receptor (LDLR), and LDLR-related protein-1 (LRP1), but the relative contribution of each class of receptors under different dietary conditions remains unclear.
Approach And Results: Triglyceride-rich lipoprotein clearance was measured in AlbCre(+)Ndst1(f/f), Ldlr(-/-), and AlbCre(+)Lrp1(f/f) mice and mice containing combinations of these mutations. Triglyceride measurements in single and double mutant mice showed that HSPGs and LDLR dominate clearance under fasting conditions and postprandial conditions, but LRP1 contributes significantly when LDLR is absent.
The heparan sulfate proteoglycan (HSPG) syndecan-1 (SDC1) acts as a major receptor for triglyceride-rich lipoprotein (TRL) clearance in the liver. We sought to identify the relevant apolipoproteins on TRLs that mediate binding to SDC1 and determine their clinical relevance. Evidence supporting ApoE as a major determinant arose from its enrichment in TRLs from mice defective in hepatic heparan sulfate (Ndst1f/fAlbCre⁺ mice), decreased binding of ApoE-deficient TRLs to HSPGs on human hepatoma cells, and decreased clearance of ApoE-deficient [³H]TRLs in vivo.
View Article and Find Full Text PDFUnlabelled: We recently showed that the heparan sulfate proteoglycan syndecan-1 mediates hepatic clearance of triglyceride-rich lipoproteins in mice based on systemic deletion of syndecan-1 and hepatocyte-specific inactivation of sulfotransferases involved in heparan sulfate biosynthesis. Here, we show that syndecan-1 expressed on primary human hepatocytes and Hep3B human hepatoma cells can mediate binding and uptake of very low density lipoprotein (VLDL). Syndecan-1 also undergoes spontaneous shedding from primary human and murine hepatocytes and Hep3B cells.
View Article and Find Full Text PDFProg Mol Biol Transl Sci
October 2010
Hypertriglyceridemia, characterized by the accumulation of triglyceride-rich lipoproteins in the blood, affects 10-20% of the population in western countries and increases the risk of atherosclerosis, coronary artery disease, and pancreatitis. The etiology of hypertriglyceridemia is complex, and much interest exists in identifying and characterizing the biological and environmental factors that affect the synthesis and turnover of plasma triglycerides. Genetic studies in mice have recently identified that heparan sulfate proteoglycans are a class of receptors that mediate the clearance of triglyceride-rich lipoproteins in the liver.
View Article and Find Full Text PDFElevated plasma triglyceride levels represent a risk factor for premature atherosclerosis. In mice, accumulation of triglyceride-rich lipoproteins can occur if sulfation of heparan sulfate in hepatocytes is diminished, as this alters hepatic lipoprotein clearance via heparan sulfate proteoglycans (HSPGs). However, the relevant HSPG has not been determined.
View Article and Find Full Text PDF