The sustained liquid flow of a typical lateral flow assay can be mimicked by two-dimensional shaped, thin porous membranes, specifically rectangular membranes appended to circular sectors. In designing these fan-shaped devices, we have been aided by analytical equations and finite-element simulations. We show both mathematically and experimentally how a continuous increase in unwetted pore volume causes a deviation from traditional imbibition, and leads to quasi-stationary flow in the rectangular element.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2009
We have fabricated paper- and nitrocellulose-based lateral-flow devices that are shaped in two dimensions by a computer-controlled knife. The resulting star, candelabra, and other structures are spotted with multiple bioassay reagents to produce multiplex lateral-flow assays. We have also fabricated laminar composites in which porous nitrocellulose media are sandwiched between vinyl and polyester plastic films.
View Article and Find Full Text PDF