Publications by authors named "Erin M Bank"

Introduction: The primary objective of this study was to determine whether workplace culture in academic oncology differed by gender, during the COVID-19 pandemic.

Materials And Methods: We used the Culture Conducive to Women's Academic Success (CCWAS), a validated survey tool, to investigate the academic climate at an NCI-designated Cancer Center. We adapted the CCWAS to be applicable to people of all genders.

View Article and Find Full Text PDF

Following the successful renewal of its Cancer Center Support Grant (CCSG), leadership of the UCSF Helen Diller Comprehensive Cancer Center (HDFCCC) began a strategic planning process. The motivation was to think about where cancer research was going in the future; and with this vision to define a general scientific direction, mission, and priorities. HDFCCC Leadership began discussions about a new strategic plan in early 2018.

View Article and Find Full Text PDF

The most severe form of human malaria is caused by the parasite Plasmodium falciparum. The second messenger cAMP has been shown to be important for the parasite's ability to infect the host's liver, but its role during parasite growth inside erythrocytes, the stage responsible for symptomatic malaria, is less clear. The P.

View Article and Find Full Text PDF

In metazoan cells, the heterochromatin is generally localized at the nuclear periphery, whereas active genes are preferentially found in the nuclear interior. In the present paper, we review current evidence showing that components of the nuclear lamina interact directly with heterochromatin, which implicates the nuclear lamina in a mechanism of specific gene retention at the nuclear periphery and release to the nuclear interior upon gene activation. We also discuss recent data showing that mutations in lamin proteins affect gene positioning and expression, providing a potential mechanism for how these mutations lead to tissue-specific diseases.

View Article and Find Full Text PDF

The nuclear lamina is a major structural element of the nucleus and is predominately composed of the intermediate filament lamin proteins. Missense mutations in the human lamins A/C cause a family of laminopathic diseases, with no known mechanistic link between the position of the mutation and the resulting disease phenotypes. The Caenorhabditis elegans lamin (Ce-lamin) is structurally and functionally homologous to human lamins, and recent advances have allowed detailed structural analysis of Ce-lamin filaments both in vitro and in vivo.

View Article and Find Full Text PDF

The nuclear lamina is a protein-rich network located directly underneath the inner nuclear membrane of metazoan nuclei. The components of the nuclear lamina have been implicated in nearly all nuclear functions; therefore, understanding the structural, mechanical, and signal transducing properties of these proteins is crucial. In addition, mutations in many of these proteins cause a wide range of human diseases, the laminopathies.

View Article and Find Full Text PDF

Background: In worms, as in other organisms, many tissue-specific promoters are sequestered at the nuclear periphery when repressed and shift inward when activated. It has remained unresolved, however, whether the association of facultative heterochromatin with the nuclear periphery, or its release, has functional relevance for cell or tissue integrity.

Results: Using ablation of the unique lamin gene in C.

View Article and Find Full Text PDF

Mutations in the human LMNA gene underlie many laminopathic diseases, including Emery-Dreifuss muscular dystrophy (EDMD); however, a mechanistic link between the effect of mutations on lamin filament assembly and disease phenotypes has not been established. We studied the ΔK46 Caenorhabditis elegans lamin mutant, corresponding to EDMD-linked ΔK32 in human lamins A and C. Cryo-electron tomography of lamin ΔK46 filaments in vitro revealed alterations in the lateral assembly of dimeric head-to-tail polymers, which causes abnormal organization of tetrameric protofilaments.

View Article and Find Full Text PDF

Carbon dioxide (CO2) is an end product of cellular respiration, a process by which organisms including all plants, animals, many fungi and some bacteria obtain energy. CO2 has several physiologic roles in respiration, pH buffering, autoregulation of the blood supply and others. Here we review recent findings from studies in mammalian lung cells, Caenorhabditis elegans and Drosophila melanogaster that help shed light on the molecular sensing and response to hypercapnia.

View Article and Find Full Text PDF

The second messenger cAMP has been extensively studied for half a century, but the plethora of regulatory mechanisms controlling cAMP synthesis in mammalian cells is just beginning to be revealed. In mammalian cells, cAMP is produced by two evolutionary related families of adenylyl cyclases, soluble adenylyl cyclases (sAC) and transmembrane adenylyl cyclases (tmAC). These two enzyme families serve distinct physiological functions.

View Article and Find Full Text PDF