Background: Formation of precise neuronal connections requires proper axon guidance. Microtubules (MTs) of the growth cone provide a critical driving force during navigation of the growing ends of axons. Pioneer MTs and their plus-end tracking proteins (+TIPs) are thought to play integrative roles during this navigation.
View Article and Find Full Text PDFWolf-Hirschhorn Syndrome (WHS) is a neurodevelopmental disorder characterized by mental retardation, craniofacial malformation, and defects in skeletal and heart development. The syndrome is associated with irregularities on the short arm of chromosome 4, including deletions of varying sizes and microduplications. Many of these genotypic aberrations in humans have been correlated with the classic WHS phenotype, and animal models have provided a context for mapping these genetic irregularities to specific phenotypes; however, there remains a significant knowledge gap concerning the cell biological mechanisms underlying these phenotypes.
View Article and Find Full Text PDFMicrotubule dynamics is regulated by plus end-tracking proteins (+TIPs), which localize to the plus ends of microtubules (MTs). We previously showed that TACC1 and TACC3, members of the transforming acidic coiled-coil protein family, can act as +TIPs to regulate MT dynamics in Xenopus laevis Here we characterize TACC2 as a +TIP that localizes to MT plus ends in front of EB1 and overlapping with TACC1 and TACC3 in multiple embryonic cell types. We also show that TACC2 can promote MT polymerization in mesenchymal cells but not neuronal growth cones, thus displaying cell-type specificity.
View Article and Find Full Text PDFMicrotubule plus end dynamics are regulated by a conserved family of proteins called plus end-tracking proteins (+TIPs). It is unclear how various +TIPs interact with each other and with plus ends to control microtubule behavior. The centrosome-associated protein TACC3, a member of the transforming acidic coiled-coil (TACC) domain family, has been implicated in regulating several aspects of microtubule dynamics.
View Article and Find Full Text PDF