Publications by authors named "Erin L Carter"

Variation in the microbiome among individual organisms may play a critical role in the relative susceptibility of those organisms to infection, disease, and death. However, predicting microbiome function is difficult because of spatial and temporal variation in microbial diversity, and taxonomic diversity is not predictive of microbiome functional diversity. Addressing this issue may be particularly important when addressing pandemic diseases, such as the global amphibian die-off associated with .

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the role of adenosine A2A receptors in neonatal piglets experiencing global hypoxia-ischemia (H-I) and how they contribute to neuronal injury upon reoxygenation, particularly in striatal neurons.
  • In healthy piglets, the A2A receptor agonist CGS 21680 increased phosphorylation of NMDA receptors and Na(+),K(+)-ATPase, while treatment with the A2A antagonist SCH 58261 in ischemic piglets showed improved neurological recovery and protection for striatopallidal neurons.
  • The activation of A2A receptors post-H-I was found to exacerbate oxidative stress and excitotoxicity through harmful signaling pathways associated with protein phosphorylation, leading to neuronal
View Article and Find Full Text PDF

Background: The implementation and clinical efficacy of hypothermia in neonatal hypoxic-ischemic (HI) encephalopathy are limited, in part, by the delay in instituting hypothermia and access to equipment. In a piglet model of HI, half of the neurons in putamen already showed ischemic cytopathology by 6 hours of recovery. We tested the hypothesis that treatment with the superoxide dismutase-catalase mimetic EUK-134 at 30 minutes of recovery provides additive neuronal protection when combined with 1 day of whole-body hypothermia implemented 4 hours after resuscitation.

View Article and Find Full Text PDF

Background: Cerebrovascular autoregulation after resuscitation has not been well studied in an experimental model of pediatric cardiac arrest. Furthermore, developing noninvasive methods of monitoring autoregulation using near-infrared spectroscopy (NIRS) would be clinically useful in guiding neuroprotective hemodynamic management after pediatric cardiac arrest. We tested the hypotheses that the lower limit of autoregulation (LLA) would shift to a higher arterial blood pressure between 1 and 2 days of recovery after cardiac arrest and that the LLA would be detected by NIRS-derived indices of autoregulation in a swine model of pediatric cardiac arrest.

View Article and Find Full Text PDF

20-Hydroxyeicosatetraenoic acid (20-HETE) is a cytochrome P450 metabolite of arachidonic acid that that contributes to infarct size following focal cerebral ischemia. However, little is known about the role of 20-HETE in global cerebral ischemia or neonatal hypoxia-ischemia (H-I). The present study examined the effects of blockade of the synthesis of 20-HETE with N-hydroxy-N'-(4-n-butyl-2-methylphenyl) formamidine (HET0016) in neonatal piglets after H-I to determine if it protects highly vulnerable striatal neurons.

View Article and Find Full Text PDF

Objective: Knowledge remains limited regarding cerebral blood flow autoregulation after cardiac arrest and during postresuscitation hypothermia. We determined the relationship of cerebral blood flow to cerebral perfusion pressure in a swine model of pediatric hypoxic-asphyxic cardiac arrest during normothermia and hypothermia and tested novel measures of autoregulation derived from near-infrared spectroscopy.

Design: Prospective, balanced animal study.

View Article and Find Full Text PDF

Striatal neurons are highly vulnerable to hypoxia-ischemia (HI) in term newborns. In a piglet model of HI, striatal neurons develop oxidative stress and organelle disruption by 3-6 h of recovery and ischemic cytopathology over 6-24 h of recovery. We tested the hypothesis that early treatment with the antioxidants EUK-134 (a manganese-salen derivative that acts as a scavenger of superoxide, hydrogen peroxide, nitric oxide or NO and peroxynitrite) or edaravone (MCI-186, a scavenger of hydroxyl radical and NO) protects striatal neurons from HI.

View Article and Find Full Text PDF

Na+,Ca2+-permeable acid-sensing ion channel 1a (ASIC1a) is involved in the pathophysiologic process of adult focal brain ischemia. However, little is known about its role in the pathogenesis of global cerebral ischemia or newborn hypoxia-ischemia (H-I). Here, using a newborn piglet model of asphyxia-induced cardiac arrest, we investigated the effect of ASIC1a-specific blocker psalmotoxin-1 on neuronal injury.

View Article and Find Full Text PDF

In adult stroke models, 4-phenyl-1-(4-phenylbutyl) piperidine (PPBP), a sigma receptor agonist, attenuates activity of neuronal nitric oxide synthase (nNOS), blunts ischemia-induced nitric oxide production, and provides neuroprotection. Here, we tested the hypothesis that PPBP attenuates neuronal damage in a model of global hypoxia-ischemia (H-I) in newborn piglets. Piglets subjected to hypoxia followed by asphyxic cardiac arrest were treated with saline or two dosing regimens of PPBP after resuscitation.

View Article and Find Full Text PDF