Single-cell RNA sequencing (scRNA-seq) has transformed our understanding of cell fate in developmental systems. However, identifying the molecular hallmarks of potency - the capacity of a cell to differentiate into other cell types - has remained challenging. Here, we introduce CytoTRACE 2, an interpretable deep learning framework for characterizing potency and differentiation states on an absolute scale from scRNA-seq data.
View Article and Find Full Text PDFRecent studies have emphasized the importance of single-cell spatial biology, yet available assays for spatial transcriptomics have limited gene recovery or low spatial resolution. Here we introduce CytoSPACE, an optimization method for mapping individual cells from a single-cell RNA sequencing atlas to spatial expression profiles. Across diverse platforms and tissue types, we show that CytoSPACE outperforms previous methods with respect to noise tolerance and accuracy, enabling tissue cartography at single-cell resolution.
View Article and Find Full Text PDFExploring mechanisms responsible for brown adipose tissue's (BAT) high metabolic activity is crucial to exploit its energy-dissipating ability for therapeutic purposes. Basigin (Bsg), a multifunctional highly glycosylated transmembrane protein, was recently proposed as one of the 98 critical markers allowing to distinguish 'white' and 'brown' adipocytes, yet its function in thermogenic brown adipocytes is unknown. Here, we report that Bsg is negatively associated with obesity in mice.
View Article and Find Full Text PDFKey Points: Afadin is a ubiquitously expressed scaffold protein with a recently discovered role in insulin signalling and glucose metabolism. Insulin-stimulated phosphorylation of Afadin at S1795 occurs in insulin-responsive tissues such as adipose tissue, muscle, liver, pancreas and heart. Afadin abundance and Afadin phosphorylation are dynamically regulated in metabolic tissues during diet-induced obesity progression.
View Article and Find Full Text PDFObjective: Increasing adaptive thermogenesis by stimulating browning in white adipose tissue is a promising method of improving metabolic health. However, the molecular mechanisms underlying this transition remain elusive. Our study examined the molecular determinants driving the differentiation of precursor cells into thermogenic adipocytes.
View Article and Find Full Text PDFActivation of thermogenic adipose tissue is linked to improved metabolic outcomes in mice and humans. Dissipation of energy as heat during thermogenesis relies on sufficient innervation of fat by sympathetic nerve fibers, a process recently proposed to be regulated by the adipose-specific calsyntenin3β (Clstn3β)-S100b axis. Here we aimed 1) to assess enrichment patterns of , as well as the previously annotated neuronal in perirenal brown and subcutaneous white human fat specimens, and 2) to investigate if the novel is dynamically regulated by changes in environmental temperatures and nutritional stress in thermogenic adipose tissues in mice.
View Article and Find Full Text PDFHuman thermogenic adipose tissue mitigates metabolic disease, raising much interest in understanding its development and function. Here, we show that human thermogenic adipocytes specifically express a primate-specific long non-coding RNA, which is highly correlated with UCP1 expression and decreased in obesity and type-2 diabetes. is detected in progenitor cells, and increases upon differentiation and in response to cAMP.
View Article and Find Full Text PDFInsulin orchestrates metabolic homeostasis through a complex signaling network for which the precise mechanisms controlling its fine-tuning are not completely understood. Here, we report that Afadin, a scaffold protein, is phosphorylated on S1795 (S1718 in humans) in response to insulin in adipocytes, and this phosphorylation is impaired with obesity and insulin resistance. In turn, loss of Afadin enhances the response to insulin in adipose tissues via upregulation of the insulin receptor protein levels.
View Article and Find Full Text PDFThe transcriptional coactivators peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) and PGC-1β are positive regulators of skeletal muscle mass and energy metabolism; however, whether they influence muscle growth and metabolic adaptations via increased protein synthesis is not clear. This study revealed PGC-1α or PGC-1β overexpression in C2C12 myotubes increased protein synthesis and myotube diameter under basal conditions and attenuated the loss in protein synthesis following the treatment with the catabolic agent, dexamethasone. To investigate whether PGC-1α or PGC-1β signal through the Akt/mTOR pathway to increase protein synthesis, treatment with the PI3K and mTOR inhibitors, LY294002 and rapamycin, respectively, was undertaken but found unable to block PGC-1α or PGC-1β's promotion of protein synthesis.
View Article and Find Full Text PDFAdrenergic stimulation of brown adipose tissue (BAT) induces acute and long-term responses. The acute adrenergic response activates thermogenesis by uncoupling oxidative phosphorylation and enabling increased substrate oxidation. Long-term, adrenergic signaling remodels BAT, inducing adaptive transcriptional changes that expand thermogenic capacity.
View Article and Find Full Text PDFBrown adipose tissue (BAT) thermogenesis relies on a high abundance of mitochondria and the unique expression of the mitochondrial Uncoupling Protein 1 (UCP1), which uncouples substrate oxidation from ATP synthesis. Adrenergic stimulation of brown adipocytes activates UCP1-mediated thermogenesis; it also induces the expression of Ucp1 and other genes important for thermogenesis, thereby endowing adipocytes with higher oxidative and uncoupling capacities. Adipocyte mitochondrial biogenesis and oxidative capacity are controlled by multiple transcription factors, including the estrogen-related receptor (ERR)α.
View Article and Find Full Text PDFThe cytokine granulocyte colony-stimulating factor (G-CSF) binds to its receptor (G-CSFR) to stimulate hematopoietic stem cell mobilization, myelopoiesis, and the production and activation of neutrophils. In response to exercise-induced muscle damage, G-CSF is increased in circulation and G-CSFR has recently been identified in skeletal muscle cells. While G-CSF/G-CSFR activation mediates pro- and anti-inflammatory responses, our understanding of the role and regulation in the muscle is limited.
View Article and Find Full Text PDFBackground: Cystic fibrosis (CF) is a genetic disease characterized by complex polymicrobial communities within the lower respiratory tract. S. pneumoniae, while a well-defined pathogen in the general population, has rarely been identified in CF.
View Article and Find Full Text PDFGranulocyte-colony stimulating factor (G-CSF) has been demonstrated to enhance skeletal muscle recovery following injury and increases muscle function in the context of neuromuscular disease in rodent models. However, understanding of the underlying mechanisms used by G-CSF to mediate these functions remains poor. G-CSF acts on responsive cells through binding to a specific membrane spanning receptor, G-CSFR.
View Article and Find Full Text PDFThe present study aimed to investigate whether skeletal muscle from whole body creatine transporter (CrT; SLC6A8) knockout mice (CrT(-/y)) actually contained creatine (Cr) and if so, whether this Cr could result from an up regulation of muscle Cr biosynthesis. Gastrocnemius muscle from CrT(-/y) and wild type (CrT(+/y)) mice were analyzed for ATP, Cr, Cr phosphate (CrP), and total Cr (TCr) content. Muscle protein and gene expression of the enzymes responsible for Cr biosynthesis L-arginine:glycine amidotransferase (AGAT) and guanidinoacetate methyltransferase (GAMT) were also determined as were the rates of in vitro Cr biosynthesis.
View Article and Find Full Text PDFAs a transcriptional coactivator, PGC-1α contributes to the regulation of a broad range of metabolic processes in skeletal muscle health and disease; however, there is limited information about the genes it transcriptionally regulates. To identify new potential gene targets of PGC-1α regulation, mouse C2C12 myotubes were screened by microarray analysis following PGC-1α overexpression. Genes with an mRNA expression of 2.
View Article and Find Full Text PDFBiochim Biophys Acta
December 2014
Intramuscular creatine plays a crucial role in maintaining skeletal muscle energy homeostasis, and its entry into the cell is dependent upon the sodium chloride dependent Creatine Transporter (CrT; Slc6a8). CrT activity is regulated by a number of factors including extra- and intracellular creatine concentrations, hormones, changes in sodium concentration, and kinase activity, however very little is known about the regulation of CrT gene expression. The present study aimed to investigate how Creatine Transporter (CrT) gene expression is regulated in skeletal muscle.
View Article and Find Full Text PDFGranulocyte-colony stimulating factor (G-CSF) increases recovery of rodent skeletal muscles after injury, and increases muscle function in rodent models of neuromuscular disease. However, the mechanisms by which G-CSF mediates these effects are poorly understood. G-CSF acts by binding to the membrane spanning G-CSFR and activating multiple intracellular signaling pathways.
View Article and Find Full Text PDFThe stress-responsive, tumor suppressor N-myc downstream-regulated gene 2 (Ndrg2) is highly expressed in striated muscle. In response to anabolic and catabolic signals, Ndrg2 is suppressed and induced, respectively, in mouse C2C12 myotubes. However, little is known about the mechanisms regulating Ndrg2 expression in muscle, as well as the biological role for Ndrg2 in differentiated myotubes.
View Article and Find Full Text PDFThe identification of microRNAs (miRNAs) has established new mechanisms that control skeletal muscle adaptation to exercise. The present study investigated the mRNA regulation of components of the miRNA biogenesis pathway (Drosha, Dicer and Exportin-5), muscle enriched miRNAs, (miR-1, -133a, -133b and -206), and several miRNAs dysregulated in muscle myopathies (miR-9, -23, -29, -31 and -181). Measurements were made in muscle biopsies from nine healthy untrained males at rest, 3 h following an acute bout of moderate-intensity endurance cycling and following 10 days of endurance training.
View Article and Find Full Text PDFResearch has shown that writing about emotional topics can positively influence physical and mental health. The current study tested the efficacy of an e-mail-based writing treatment and shows how such an implementation can aid in the search for moderators. Participants (N = 546) were randomly assigned to either a long- or short-interval traumatic writing condition or to a nonemotional writing control condition.
View Article and Find Full Text PDF