This study compared the reliability of motor maps over 3 sessions from both neuronavigated transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI) data between younger and older adults. Seven younger (ages 19-31) and seven older (ages 64-76) adults participated in three joint TMS/fMRI assessment sessions separated by 7 or 14 days. Sessions involved mapping of the right first dorsal interosseous muscle using single-pulse TMS immediately followed by block-design fMRI scanning involving volitional right-hand index finger to thumb oppositional squeeze.
View Article and Find Full Text PDFAerobic exercise has been suggested to ameliorate aging-related decline in humans. Recently, evidence has indicated chronological aging is associated with decreases in measures of interhemispheric inhibition during unimanual movements, but that such decreases may be mitigated by long-term physical fitness. The present study investigated measures of ipsilateral (right) primary motor cortex activity during right-hand movements using functional magnetic resonance imaging and transcranial magnetic stimulation (TMS).
View Article and Find Full Text PDFBrain-derived neurotrophic factor (BDNF) is important to brain functions such as plasticity and repair. A single nucleotide polymorphism for this growth factor, val(66)met, is common and associated with decreased activity-dependent BDNF release. The current study evaluated the effects of this polymorphism in relation to human brain motor system function, short-term plasticity, and learning.
View Article and Find Full Text PDFMeasuring changes in the characteristics of corticospinal output has become a critical part of assessing the impact of motor experience on cortical organization in both the intact and injured human brain. In this protocol we describe a method for systematically assessing training-induced changes in corticospinal output that integrates volumetric anatomical MRI with transcranial magnetic stimulation (TMS). A TMS coil is sited to a target grid superimposed onto a 3D MRI of cortex using a stereotaxic neuronavigation system.
View Article and Find Full Text PDF