Melanopsin-containing retinal ganglion cells (RGCs) project to the suprachiasmatic nuclei (SCN) and mediate photoentrainment of the circadian system. Melanopsin is a novel retinal-based photopigment that renders these cells intrinsically photosensitive (ip). Although genetic ablation of melanopsin abolishes the intrinsic light response, it has a surprisingly minor effect on circadian photoentrainment.
View Article and Find Full Text PDFIn mammals, the master circadian clock resides in the suprachiasmatic nuclei (SCN) of the hypothalamus. The period and phase of the circadian pacemaker are calibrated by direct photic input from retinal ganglion cells (RGCs). SCN-projecting RGCs respond to light in the absence of rod- and cone-driven synaptic input, a property for which they are termed intrinsically photosensitive.
View Article and Find Full Text PDFIn mammals, light entrainment of the circadian clock, located in the suprachiasmatic nuclei (SCN), requires retinal input. Traditional rod and cone photoreceptors, however, are not required. Instead, the SCN-projecting retinal ganglion cells (RGCs) function as autonomous photoreceptors and exhibit light responses independent of rod- and cone-driven input.
View Article and Find Full Text PDF