Vibrio cholerae has adapted to a wide range of salinity, pH and osmotic conditions, enabling it to survive passage through the host and persist in the environment. Among the many proteins responsible for bacterial survival under these diverse conditions, we have identified Vc-NhaP1 as a K(+)(Na(+))/H(+) antiporter essential for V. cholerae growth at low environmental pH.
View Article and Find Full Text PDFThe existence of bacterial K(+)/H(+) antiporters that prevent the overaccumulation of potassium in the cytoplasm was predicted by Peter Mitchell almost 50 years ago. The importance of K(+)/H(+) antiport for bacterial physiology is widely recognized, but its molecular mechanisms remain underinvestigated. Here, we demonstrate that a putative Na(+)/H(+) antiporter, Vc-NhaP2, protects cells of Vibrio cholerae growing at pH 6.
View Article and Find Full Text PDFVibrio tubiashii, a pathogen of shellfish larvae and juveniles, produces several extracellular products. Here, we document that culture supernatants of several marine Vibrio species showed toxicity to oyster larvae. Treatment of these supernatants with EDTA not only severely diminished proteolytic activities, but also dramatically reduced toxicity to the larvae.
View Article and Find Full Text PDFVibrio tubiashii is a recently reemerging pathogen of larval bivalve mollusks, causing both toxigenic and invasive disease. Marine Vibrio spp. produce an array of extracellular products as potential pathogenicity factors.
View Article and Find Full Text PDF