Amid increasing demands from students and the public, universities have recently reinvigorated their efforts to increase the number of faculty from underrepresented populations. Although a myriad of piecemeal programs targeting individual recruitment and development have been piloted at several institutions, overall growth in faculty diversity remains almost negligible and highly localized. To bring about genuine change, we hypothesize a consortia approach that links individuals to hiring opportunities within a state university system might be more effective.
View Article and Find Full Text PDFWe have previously shown that intrastriatal injection of Delta RR, the growth-compromised herpes simplex virus type 2 (HSV-2) vector for the antiapoptotic protein ICP10PK, prevents apoptosis caused by the excitotoxin N-methyl-D-aspartate (NMDA) in a mouse model of glutamatergic neuronal cell death (Golembewski et al. [2007] Exp. Neurol.
View Article and Find Full Text PDFExcessive glutamate receptor activation results in neuronal death, a process known as excitotoxicity. Intrastriatal injection of N-methyl-d-aspartate (NMDA) is a model of excitotoxicity. We used this model to examine whether excitotoxic injury is inhibited by the anti-apoptotic herpes simplex virus type 2 (HSV-2) protein, ICP10PK, delivered by the replication incompetent HSV-2 vector, DeltaRR.
View Article and Find Full Text PDFIdentification of targets and delivery platforms for gene therapy of neurodegenerative disorders is a clinical challenge. We describe a novel paradigm in which the neuroprotective gene is the herpes simplex virus type 2 (HSV-2) antiapoptotic gene ICP10PK and the vector is the growth-compromised HSV-2 mutant DeltaRR. DeltaRR is delivered intranasally.
View Article and Find Full Text PDF