Publications by authors named "Erin Easlon"

Evidence-based teaching is a highly complex skill, requiring repeated cycles of deliberate practice and feedback to master. Despite existing well-characterized frameworks for practice-based training in K-12 teacher education, the major principles of these frameworks have not yet been transferred to instructor development in higher educational contexts, including training of graduate teaching assistants (GTAs). We sought to determine whether a practice-based training program could help GTAs learn and use evidence-based teaching methods in their classrooms.

View Article and Find Full Text PDF

Calorie restriction (CR) induces a metabolic shift towards mitochondrial respiration; however, molecular mechanisms underlying CR remain unclear. Recent studies suggest that CR-induced mitochondrial activity is associated with nitric oxide (NO) production. To understand the role of mitochondria in CR, we identify and study Saccharomyces cerevisiae mutants with increased NO levels as potential CR mimics.

View Article and Find Full Text PDF

Enhanced stress response has been suggested to promote longevity in many species. Calorie restriction (CR) and conserved nutrient-sensing target of rapamycin (TOR) and protein kinase A (PKA) pathways have also been suggested to extend life span by increasing stress response, which protects cells from age-dependent accumulation of oxidative damages. Here we show that deleting the yeast 14-3-3 protein, Bmh1, extends chronological life span (CLS) by activating the stress response.

View Article and Find Full Text PDF

A central focus of aging research is to determine how calorie restriction (CR) extends lifespan and delays diseases of aging. SIRT1, the mammalian ortholog of Sir2 in yeast, is a longevity factor which mediates dietary restriction in diverse species. In addition, SIRT1 plays a protective role in several models of neurodegenerative disease.

View Article and Find Full Text PDF

Calorie restriction (CR) has been reported to increase SIRT1 protein levels in mice, rats, and humans, and elevated activity of SIRT1 orthologs extends life span in yeast, worms, and flies. In this study, we challenge the paradigm that CR induces SIRT1 activity in all tissues by showing that activity of this sirtuin in the liver is, in fact, reduced by CR and activated by a high-caloric diet. We demonstrate this change both by assaying levels of SIRT1 and its small molecule regulators, NAD and NADH, as well as assessing phenotypes of a liver-specific SIRT1 knockout mouse on various diets.

View Article and Find Full Text PDF

Recent studies suggest that increased mitochondrial metabolism and the concomitant decrease in NADH levels mediate calorie restriction (CR)-induced life span extension. The mitochondrial inner membrane is impermeable to NAD (nicotinamide adenine dinucleotide, oxidized form) and NADH, and it is unclear how CR relays increased mitochondrial metabolism to multiple cellular pathways that reside in spatially distinct compartments. Here we show that the mitochondrial components of the malate-aspartate NADH shuttle (Mdh1 [malate dehydrogenase] and Aat1 [aspartate amino transferase]) and the glycerol-3-phosphate shuttle (Gut2, glycerol-3-phosphate dehydrogenase) are novel longevity factors in the CR pathway in yeast.

View Article and Find Full Text PDF

Calorie restriction (CR) extends life span in a wide variety of species. Recent studies suggest that an increase in mitochondrial metabolism mediates CR-induced life span extension. Here we present evidence that Lat1 (dihydrolipoamide acetyltransferase), the E2 component of the mitochondrial pyruvate dehydrogenase complex, is a novel metabolic longevity factor in the CR pathway.

View Article and Find Full Text PDF

Sir2 and insulin/IGF-1 are the major pathways that impinge upon aging in lower organisms. In Caenorhabditis elegans a possible genetic link between Sir2 and the insulin/IGF-1 pathway has been reported. Here we investigate such a link in mammals.

View Article and Find Full Text PDF