Inflammation boosts the availability of electron acceptors in the intestinal lumen, creating a favorable niche for pathogenic Enterobacteriaceae. However, the mechanisms linking intestinal inflammation-mediated changes in luminal metabolites and pathogen expansion remain unclear. Here, we show that mucosal inflammation induced by Salmonella enterica serovar Typhimurium (S.
View Article and Find Full Text PDFBackground: The catabolic activity of the microbiota contributes to health by aiding in nutrition, immune education, and niche protection against pathogens. However, the nutrients consumed by common taxa within the gut microbiota remain incompletely understood.
Methods: Here we combined microbiota profiling with an un-targeted metabolomics approach to determine whether depletion of small metabolites in the cecum of mice correlated with the presence of specific bacterial taxa.
A Western-style, high-fat diet promotes cardiovascular disease, in part because it is rich in choline, which is converted to trimethylamine (TMA) by the gut microbiota. However, whether diet-induced changes in intestinal physiology can alter the metabolic capacity of the microbiota remains unknown. Using a mouse model of diet-induced obesity, we show that chronic exposure to a high-fat diet escalates choline catabolism by altering intestinal epithelial physiology.
View Article and Find Full Text PDF5-Aminosalicylic acid (5-ASA), a peroxisome proliferator-activated receptor gamma (PPAR-γ) agonist, is a widely used first-line medication for the treatment of ulcerative colitis, but its anti-inflammatory mechanism is not fully resolved. Here, we show that 5-ASA ameliorates colitis in dextran sulfate sodium (DSS)-treated mice by activating PPAR-γ signaling in the intestinal epithelium. DSS-induced colitis was associated with a loss of epithelial hypoxia and a respiration-dependent luminal expansion of , which could be ameliorated by treatment with 5-ASA.
View Article and Find Full Text PDFThe clinical spectra of irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD) intersect to form a scantily defined overlap syndrome, termed pre-IBD. We show that increased Enterobacteriaceae and reduced Clostridia abundance distinguish the fecal microbiota of pre-IBD patients from IBS patients. A history of antibiotics in individuals consuming a high-fat diet was associated with the greatest risk for pre-IBD.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
July 2018
Autosomal dominant polycystic kidney disease (ADPKD) is a life-threatening, highly prevalent monogenic disease caused by mutations in polycystin-1 (PC1) in 85% of patients. We have previously identified a COOH-terminal cleavage fragment of PC1, PC1-p30, which interacts with the transcription factor STAT6 to promote transcription. STAT6 is aberrantly active in PKD mouse models and human ADPKD, and genetic removal or pharmacological inhibition of STAT6 attenuates disease progression.
View Article and Find Full Text PDFSalmonella enterica serovar (S.) Typhi is an extraintestinal pathogen that evolved from Salmonella serovars causing gastrointestinal disease. Compared with non-typhoidal Salmonella serovars, the genomes of typhoidal serovars contain various loss-of-function mutations.
View Article and Find Full Text PDFPerturbation of the gut-associated microbial community may underlie many human illnesses, but the mechanisms that maintain homeostasis are poorly understood. We found that the depletion of butyrate-producing microbes by antibiotic treatment reduced epithelial signaling through the intracellular butyrate sensor peroxisome proliferator-activated receptor γ (PPAR-γ). Nitrate levels increased in the colonic lumen because epithelial expression of , the gene encoding inducible nitric oxide synthase, was elevated in the absence of PPAR-γ signaling.
View Article and Find Full Text PDFCarbapenemase-producing Enterobacteriaceae are an emerging threat to hospitals worldwide, and antibiotic exposure is a risk factor for developing fecal carriage that may lead to nosocomial infection. Here, we review how antibiotics reduce colonization resistance against Enterobacteriaceae to pinpoint possible control points for curbing their spread. Recent work identifies host-derived respiratory electron acceptors as a critical resource driving a post-antibiotic expansion of Enterobacteriaceae within the large bowel.
View Article and Find Full Text PDFThe mammalian intestine is host to a microbial community that prevents pathogen expansion through unknown mechanisms, while antibiotic treatment can increase susceptibility to enteric pathogens. Here we show that streptomycin treatment depleted commensal, butyrate-producing Clostridia from the mouse intestinal lumen, leading to decreased butyrate levels, increased epithelial oxygenation, and aerobic expansion of Salmonella enterica serovar Typhimurium. Epithelial hypoxia and Salmonella restriction could be restored by tributyrin treatment.
View Article and Find Full Text PDFAutosomal-dominant polycystic kidney disease (ADPKD) is a common life-threatening genetic disease that leads to renal failure. No treatment is available yet to effectively slow disease progression. Renal cyst growth is, at least in part, driven by the presence of growth factors in the lumens of renal cysts, which are enclosed spaces lacking connections to the tubular system.
View Article and Find Full Text PDFAutosomal-dominant polycystic kidney disease (ADPKD) is a common genetic disease caused by mutations in the gene coding for polycystin-1 (PC1). PC1 can regulate STAT transcription factors by a novel, dual mechanism. STAT3 and STAT6 are aberrantly activated in renal cysts.
View Article and Find Full Text PDFAutosomal-dominant (AD) polycystic kidney disease (PKD) is a leading cause of renal failure in the United States, and currently lacks available treatment options to slow disease progression. Mutations in the gene coding for polycystin-1 (PC1) underlie the majority of cases but the function of PC1 has remained poorly understood. We have previously shown that PC1 regulates the transcriptional activity of signal transducer and activator of transcription-6 (STAT6).
View Article and Find Full Text PDF