Circadian clocks regulate many important aspects of physiology, and their disturbance leads to various medical conditions. Circadian variations have been found in immune system variables, including daily rhythms in circulating WBC numbers and serum concentration of cytokines. However, control of immune functional responses by the circadian clock has remained relatively unexplored.
View Article and Find Full Text PDFAccumulating evidence indicate that molecular mechanisms generating circadian rhythms display some degree of tissue-specificity. More specifically, distinct patterns of expression for nuclear receptors of the ROR family indicate that the transcriptional control of the clock gene Bmal1 differs among tissues. This study aims to investigate the expression of Rorgammaisoforms (Rorgamma and Rorgammat) and characterize the molecular mechanisms underlying their tissue-specific expression.
View Article and Find Full Text PDFCLOCK and BMAL1 [brain and muscle ARNT (arylhydrocarbon receptor nuclear translocator)-like protein 1] are central components of the molecular clock in mammals and belong to the bHLH (basic helix-loop-helix)/PAS [PER (Period)/ARNT/SIM (single-minded)] family. Features of their dimerization have never been investigated. Here, we demonstrate that PAS domain function requires regions extending over the short PAS core repeats.
View Article and Find Full Text PDF