Advanced oxidation processes (AOPs) are gaining traction as they offer mineralization potential rather than transferring contaminants between media. However, AOPs operated with limited energy and/or chemical inputs can exacerbate disinfection byproduct (DBP) formation, even as precursors such as dissolved organic carbon, UV254, and specific UV absorbance (SUVA) decrease. This study examined the relationship between DBP precursors and formation using TiO2 photocatalysis experiments, external AOP and non-AOP data, and predictive DBP models.
View Article and Find Full Text PDFThis study evaluated strategies targeting disinfection byproduct (DBP) mitigation using TiO2 photocatalysis with varying influent water quality. A Purifics Photo-CAT Lab reactor was used to assess total trihalomethane (TTHM) and haloacetic acid (HAA) formation as a function of photocatalytic treatment using water from a conventional coagulation/flocculation/sedimentation process, granular activated carbon filtration, and a DBP hot spot in the water distribution system. Regardless of influent water quality, photocatalysis reduced DBP precursors; however, low-energy limited photocatalysis (<5 kW h m(-3)), exacerbated the production of TTHMs and HAA5s beyond initial levels.
View Article and Find Full Text PDF