Recently, we have investigated the sensitivity of an mEGFP-linker-mScarlet-I construct (GE2.3) in response to macromolecular crowding using ensemble time-resolved two-photon (2P) fluorescence measurements [Mersch , 2024, (5), 3927-3940] as a point of reference for developing a single-molecule approach for Förster resonance energy transfer (FRET). Here, we investigate the fluorescence fluctuations, FRET, molecular brightness, and translational diffusion of GE2.
View Article and Find Full Text PDFMacromolecular crowding affects many cellular processes such as diffusion, biochemical reaction kinetics, protein-protein interactions, and protein folding. Mapping the heterogeneous, dynamic crowding in living cells or tissues requires genetically encoded, site-specific, crowding sensors that are compatible with quantitative, noninvasive fluorescence micro-spectroscopy. Here, we carried out time-resolved 2P-fluorescence measurements of a new mEGFP-linker-mScarlet-I macromolecular crowding construct (GE2.
View Article and Find Full Text PDFIn this report, we have developed a simple approach using single-detector fluorescence autocorrelation spectroscopy (FCS) to investigate the Förster resonance energy transfer (FRET) of genetically encoded, freely diffusing crTC2.1 (mTurquoise2.1-linker-mCitrine) at the single molecule level.
View Article and Find Full Text PDFEukaryotic cells exploit dynamic and compartmentalized ionic strength to impact a myriad of biological functions such as enzyme activities, protein-protein interactions, and catalytic functions. Herein, we investigated the fluorescence depolarization dynamics of recently developed ionic strength biosensors (mCerulean3-linker-mCitrine) in Hofmeister salt (KCl, NaCl, NaI, and NaSO) solutions. The mCerulean3-mCitrine acts as a Förster resonance energy transfer (FRET) pair, tethered together by two oppositely charged α-helices in the linker region.
View Article and Find Full Text PDFLiving cells are complex, crowded, and dynamic and continually respond to environmental and intracellular stimuli. They also have heterogeneous ionic strength with compartmentalized variations in both intracellular concentrations and types of ions. These challenges would benefit from the development of quantitative, noninvasive approaches for mapping the heterogeneous ionic strength fluctuations in living cells.
View Article and Find Full Text PDFLiving cells are crowded with macromolecules and organelles, which affect a myriad of biochemical processes. As a result, there is a need for sensitive molecular sensors for quantitative, site-specific assessment of macromolecular crowding. Here, we investigated the excited-state dynamics of recently developed hetero-FRET sensors (mCerulean3-linker-mCitrine) in homogeneous and heterogeneous environments using time-resolved fluorescence measurements, which are compatible with fluorescence lifetime imaging microscopy (FLIM).
View Article and Find Full Text PDFMacromolecular crowding is prevalent in all living cells due to the presence of large biomolecules and organelles. Cellular crowding is heterogeneous and is known to influence biomolecular transport, biochemical reactions, and protein folding. Emerging evidence suggests that some cell pathologies may be correlated with compartmentalized crowding.
View Article and Find Full Text PDFLiving cells are crowded with dynamic distributions of macromolecules and organelles that influence protein diffusion, molecular transport, biochemical reactions, and protein assembly. Here, we test the hypothesis that the diffusion of single molecules deviates from Brownian motion as described by the Stokes-Einstein model in a manner that depends on the viscosity range, the chemical structure of both the diffusing species and the crowding agents, and the spatio-temporal resolution of the employed analytical methods. Our size-dependent fluorescent probes are rhodamine-110, quantum dots, enhanced green fluorescent proteins (EGFP), and mCerulean3-linker-mCitrine FRET probes with various linker length and flexibility.
View Article and Find Full Text PDFLiving cells are crowded with macromolecules and organelles. As a result, there is an urgent need for molecular sensors for quantitative, site-specific assessment of the macromolecular crowding effects on a myriad of biochemical processes toward quantitative cell biology and biophysics. Here we investigate the excited-state dynamics and translational diffusion of a novel FRET sensor (mCerulean-linker-mCitrine) in a buffer (PBS, pH 7.
View Article and Find Full Text PDFObjectives: To gather and evaluate the perceptions of students, faculty members, and administrators regarding the frequency and appropriateness of classroom technology use.
Methods: Third-year pharmacy students and faculty members at 6 colleges and schools of pharmacy were surveyed to assess their perceptions about the type, frequency, and appropriateness of using technology in the classroom. Upper-level administrators and information technology professionals were also interviewed to ascertain overall technology goals and identify criteria used to adopt new classroom technologies.
Protein organization on biomembranes and their dynamics are essential for cellular function. It is not clear, however, how protein binding may influence the assembly of underlying lipids or how the membrane structure leads to functional protein organization. Toward this goal, we investigated the effects of annexin a5 binding to biomimetic membranes using fluorescence imaging and correlation spectroscopy.
View Article and Find Full Text PDFMass spectrometric imaging is a powerful tool to interrogate biological complexity. One such technique, time-of-flight secondary ion mass spectrometry (TOF-SIMS) imaging, has been successfully utilized for subcellular imaging of cell membrane components. In order for this technique to provide insight into biological processes, it is critical to characterize the figures of merit.
View Article and Find Full Text PDFThe protein machinery controlling membrane fusion (or fission) has been well studied; however, the role of vesicle diffusion near membranes in these critical processes remains unclear. We experimentally and theoretically investigated the dynamics of small vesicles (approximately 50 nm in diameter) that are diffusing near supported planar bilayers acting as "target" membranes. Using total internal reflection-fluorescence correlation spectroscopy, we examined the validity of theoretical analyses of vesicle-membrane interactions.
View Article and Find Full Text PDFBiochim Biophys Acta
November 2008
Biomembranes are complex, heterogeneous, dynamic systems playing essential roles in numerous processes such as cell signaling and membrane trafficking. Model membranes provide simpler platforms for studying biomembrane dynamics under well-controlled environments. Here we present a modified polymer lift-off approach to introduce chemical complexity into biomimetic membranes by constructing domains of one lipid composition (here, didodecylphosphatidylcholine) that are surrounded by a different lipid composition (e.
View Article and Find Full Text PDFPurines are synthesized de novo in 10 chemical steps that are catalyzed by six enzymes in eukaryotes. Studies in vitro have provided little evidence of anticipated protein-protein interactions that would enable substrate channeling and regulation of the metabolic flux. We applied fluorescence microscopy to HeLa cells and discovered that all six enzymes colocalize to form clusters in the cellular cytoplasm.
View Article and Find Full Text PDFSummer undergraduate research programs in science and engineering facilitate research progress for faculty and provide a close-ended research experience for students, which can prepare them for careers in industry, medicine, and academia. However, ensuring these outcomes is a challenge when the students arrive ill-prepared for substantive research or if projects are ill-defined or impractical for a typical 10-wk summer. We describe how the new Bioengineering and Bioinformatics Summer Institutes (BBSI), developed in response to a call for proposals by the National Institutes of Health (NIH) and the National Science Foundation (NSF), provide an impetus for the enhancement of traditional undergraduate research experiences with intense didactic training in particular skills and technologies.
View Article and Find Full Text PDFAntigen-mediated cross-linking of the high affinity receptor for IgE (Fc epsilon RI), in the plasma membrane of mast cells, is the first step in the allergic immune response. This event triggers the phosphorylation of specific tyrosines in the cytoplasmic segments of the beta and gamma subunits of Fc epsilon RI by the Src tyrosine kinase Lyn, which is anchored to the inner leaflet of the plasma membrane. Lyn-induced phosphorylation of Fc epsilon RI occurs in a cholesterol-dependent manner, leading to the hypothesis that cholesterol-rich domains, or "lipid rafts," may act as functional platforms for IgE receptor signaling.
View Article and Find Full Text PDFCholesterol-rich microdomains (or "lipid rafts") within the plasma membrane have been hypothesized to exist in a liquid-ordered phase and play functionally important roles in cell signaling; however, these microdomains defy detection using conventional imaging. To visualize domains and relate their nanostructure and dynamics to mast cell signaling, we use two-photon (760 nm and 960 nm) fluorescence lifetime imaging microscopy and fluorescence polarization anisotropy imaging, with comparative one-photon anisotropy imaging and single-point lifetime and anisotropy decay measurements. The inherent sensitivity of ultrafast excited-state dynamics and rotational diffusion to the immediate surroundings of a fluorophore allows for real-time monitoring of membrane structure and organization.
View Article and Find Full Text PDFThe nitroxide-mediated polymerization of styrenic monomers containing oligo(ethylene glycol) (OEGn) moieties was chosen for the preparation of biocompatible polymer brushes tethered to silicon oxide surfaces due to the broad range of monomer structures available and the use of a nonmetallic initiator. These surfaces were characterized by near-edge X-ray absorption fine structure and water contact angle measurements. The biocompatibility of these grown polymer brushes was studied and compared with deposited assemblies of surface-bound OEGn-terminated silanes with selected chain lengths.
View Article and Find Full Text PDFThe main potential of intrinsically fluorescent proteins (IFPs), as noninvasive and site-specific markers, lies in biological applications such as intracellular visualization and molecular genetics. However, photophysical studies of IFPs have been carried out mainly in aqueous solution. Here, we provide a comprehensive analysis of the intracellular environmental effects on the steady-state spectroscopy and excited-state dynamics of green (EGFP) and red (DsRed) fluorescent proteins, using both one- and two-photon excitation.
View Article and Find Full Text PDF