During mitosis, the condensin I and II complexes compact chromatin into chromosomes. Loss of the chromokinesin, KIF4A, results in reduced condensin I association with chromosomes, but the molecular mechanism behind this phenotype is unknown. In this study, we reveal that KIF4A binds directly to the human condensin I HAWK subunit, NCAPG, via a conserved disordered short linear motif (SLiM) located in its C-terminal tail.
View Article and Find Full Text PDFCD8 T cells are critical to the adaptive immune response against viral pathogens. However, overwhelming antigen exposure can result in their exhaustion, characterised by reduced effector function, failure to clear virus, and the upregulation of inhibitory receptors, including programmed cell death 1 (PD-1). However, exhausted T cell responses can be "re-invigorated" by inhibiting PD-1 or the primary ligand of PD-1: PD-L1.
View Article and Find Full Text PDFCondensin, an SMC (structural maintenance of chromosomes) protein complex, extrudes DNA loops using an ATP-dependent mechanism that remains to be elucidated. Here, we show how condensin activity alters the topology of the interacting DNA. High condensin concentrations restrain positive DNA supercoils.
View Article and Find Full Text PDFDramatic change in chromosomal DNA morphology between interphase and mitosis is a defining features of the eukaryotic cell cycle. Two types of enzymes, namely cohesin and condensin confer the topology of chromosomal DNA by extruding DNA loops. While condensin normally configures chromosomes exclusively during mitosis, cohesin does so during interphase.
View Article and Find Full Text PDFDNA loop extrusion by condensins and decatenation by DNA topoisomerase II (topo II) are thought to drive mitotic chromosome compaction and individualization. Here, we reveal that the linker histone H1.8 antagonizes condensins and topo II to shape mitotic chromosome organization.
View Article and Find Full Text PDFCondensin complexes compact and disentangle chromosomes in preparation for cell division. Commercially available antibodies raised against condensin subunits have been widely used to characterise their cellular interactome. Here we have assessed the specificity of a polyclonal antibody (Bethyl A302-276A) that is commonly used as a probe for NCAPH2, the kleisin subunit of condensin II, in mammalian cells.
View Article and Find Full Text PDFBiochem Soc Trans
October 2020
Condensin and cohesin, both members of the structural maintenance of chromosome (SMC) family, contribute to the regulation and structure of chromatin. Recent work has shown both condensin and cohesin extrude DNA loops and most likely work via a conserved mechanism. This review focuses on condensin complexes, highlighting recent in vitro work characterising DNA loop formation and protein structure.
View Article and Find Full Text PDFThe Apl protein of bacteriophage 186 functions both as an excisionase and as a transcriptional regulator; binding to the phage attachment site (att), and also between the major early phage promoters (pR-pL). Like other recombination directionality factors (RDFs), Apl binding sites are direct repeats spaced one DNA helix turn apart. Here, we use in vitro binding studies with purified Apl and pR-pL DNA to show that Apl binds to multiple sites with high cooperativity, bends the DNA and spreads from specific binding sites into adjacent non-specific DNA; features that are shared with other RDFs.
View Article and Find Full Text PDFStructural maintenance of chromosomes (SMC) complexes are essential for genome organization from bacteria to humans, but their mechanisms of action remain poorly understood. Here, we characterize human SMC complexes condensin I and II and unveil the architecture of the human condensin II complex, revealing two putative DNA-entrapment sites. Using single-molecule imaging, we demonstrate that both condensin I and II exhibit ATP-dependent motor activity and promote extensive and reversible compaction of double-stranded DNA.
View Article and Find Full Text PDFHow repetitive elements, epigenetic modifications, and architectural proteins interact ensuring proper genome expression remains poorly understood. Here, we report regulatory mechanisms unveiling a central role of Alu elements (AEs) and RNA polymerase III transcription factor C (TFIIIC) in structurally and functionally modulating the genome via chromatin looping and histone acetylation. Upon serum deprivation, a subset of AEs pre-marked by the activity-dependent neuroprotector homeobox Protein (ADNP) and located near cell-cycle genes recruits TFIIIC, which alters their chromatin accessibility by direct acetylation of histone H3 lysine-18 (H3K18).
View Article and Find Full Text PDFPlasmodium falciparum Erythrocyte Membrane Protein 1 (PfEMP1) and Knob-associated Histidine-rich Protein (KAHRP) are directly linked to malaria pathology. PfEMP1 and KAHRP cluster on protrusions (knobs) on the P. falciparum-infected erythrocyte surface and enable pathogenic cytoadherence of infected erythrocytes to the host microvasculature, leading to restricted blood flow, oxygen deprivation and damage of tissues.
View Article and Find Full Text PDFAdherence of Plasmodium falciparum-infected erythrocytes to host endothelium is conferred through the parasite-derived virulence factor P. falciparum erythrocyte membrane protein 1 (PfEMP1), the major contributor to malaria severity. PfEMP1 located at knob structures on the erythrocyte surface is anchored to the cytoskeleton, and the Plasmodium helical interspersed subtelomeric (PHIST) gene family plays a role in many host cell modifications including binding the intracellular domain of PfEMP1.
View Article and Find Full Text PDFMuch of the virulence of Plasmodium falciparum malaria is caused by cytoadherence of infected erythrocytes, which promotes parasite survival by preventing clearance in the spleen. Adherence is mediated by membrane protrusions known as knobs, whose formation depends on the parasite-derived, knob-associated histidine-rich protein (KAHRP). Knobs are required for cytoadherence under flow conditions, and they contain both KAHRP and the parasite-derived erythrocyte membrane protein PfEMP1.
View Article and Find Full Text PDFCentrioles are evolutionarily conserved cylindrical cell organelles with characteristic radial symmetry. Despite their considerable size (400 nm × 200 nm, in humans), genetic studies suggest that relatively few protein components are involved in their assembly. We recently characterized the molecular architecture of the centrosomal P4.
View Article and Find Full Text PDFTolR is a 15-kDa inner membrane protein subunit of the Tol-Pal complex in Gram-negative bacteria, and its function is poorly understood. Tol-Pal is recruited to cell division sites where it is involved in maintaining the integrity of the outer membrane. TolR is related to MotB, the peptidoglycan (PG)-binding stator protein from the flagellum, suggesting it might serve a similar role in Tol-Pal.
View Article and Find Full Text PDFGenomic DNA is bound by many proteins that could potentially impede elongation of RNA polymerase (RNAP), but the factors determining the magnitude of transcriptional roadblocking in vivo are poorly understood. Through systematic experiments and modeling, we analyse how roadblocking by the lac repressor (LacI) in Escherichia coli cells is controlled by promoter firing rate, the concentration and affinity of the roadblocker protein, the transcription-coupled repair protein Mfd, and promoter-roadblock spacing. Increased readthrough of the roadblock at higher RNAP fluxes requires active dislodgement of LacI by multiple RNAPs.
View Article and Find Full Text PDFUniquely among malaria parasites, Plasmodium falciparum-infected erythrocytes (iRBCs) develop membrane protrusions, known as knobs, where the parasite adhesion receptor P. falciparum erythrocyte membrane protein 1 (PfEMP1) clusters. Knob formation and the associated iRBC adherence to host endothelium are directly linked to the severity of malaria and are functional manifestations of protein export from the parasite to the iRBC.
View Article and Find Full Text PDFCentrioles are evolutionarily conserved eukaryotic organelles composed of a protein scaffold surrounded by sets of microtubules organized with a 9-fold radial symmetry. CPAP, a centriolar protein essential for microtubule recruitment, features a C-terminal domain of unknown structure, the G-box. A missense mutation in the G-box reduces affinity for the centriolar shuttling protein STIL and causes primary microcephaly.
View Article and Find Full Text PDF