Stem Cell Reports
February 2024
Amyotrophic lateral sclerosis (ALS) is a fatal, adult-onset neurodegenerative disorder characterized by progressive muscular weakness due to the selective loss of motor neurons. Mutations in the gene Fused in Sarcoma (FUS) were identified as one cause of ALS. Here, we report that mutations in FUS lead to upregulation of synaptic proteins, increasing synaptic activity and abnormal release of vesicles at the synaptic cleft.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease affecting the upper and lower motor neurons, causing patients to lose control over voluntary movement, and leading to gradual paralysis and death. There is no cure for ALS, and the development of viable therapeutics has proved challenging, demonstrated by a lack of positive results from clinical trials. One strategy to address this is to improve the tool kit available for pre-clinical research.
View Article and Find Full Text PDFLithium is a first-line treatment for bipolar disorder, where it acts as a mood-stabilizing agent. Although its precise mechanism remains unclear, neuroimaging studies have shown that lithium accumulates in the hippocampus and that chronic use amongst bipolar disorder patients is associated with larger hippocampal volumes. Here, we tested the chronic effects of low (0.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) is characterized by degeneration of upper and lower motor neurons, causing gradual paralysis, and resulting in death 3-5 years from diagnosis. ALS causative mutations have been identified in multiple genes, including Fused in sarcoma (FUS), and recently characterized Annexin A11 (ANXA11). We have derived induced pluripotent stem cell (iPSC) lines from six ALS patient lymphoblastoid cell lines, three with mutations in FUS (Q519E, R521H, R522G), and three with mutations in ANXA11 (G38R, D40G, R235Q).
View Article and Find Full Text PDFShort telomere length is a risk factor for age-related disease, but it is also associated with reduced hippocampal volumes, age-related cognitive decline and psychiatric disorder risk. The current study explored whether telomere shortening might have an influence on cognitive function and psychiatric disorder pathophysiology, via its hypothesised effects on adult hippocampal neurogenesis. We modelled telomere shortening in human hippocampal progenitor cells in vitro using a serial passaging protocol that mimics the end-replication problem.
View Article and Find Full Text PDFIn recent years several genes have linked amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) as a spectrum disease; however little is known about what triggers their onset. With the ability to generate patient specific stem cell lines from somatic cells, it is possible to model disease without the need to transfect cells with exogenous DNA. These pluripotent stem cells have opened new avenues for identification of disease phenotypes and their relation to specific molecular pathways.
View Article and Find Full Text PDF