Non-renewable chemical reagents are commonly used as dispersants or flocculants of phyllosilicate clay particles in several industrial fields such as water/wastewater treatment, food production, papermaking, and mineral processing. However, environmentally benign reagents are highly desired due to the non-biodegradability and negative impacts of synthetic reagents on aquatic life. In this work, the dispersion and flocculation behavior of sustainable polymers (anionic and cationic biopolymers) sourced from proteins and polysaccharides were studied in serpentine phyllosilicate suspensions using the following bench-scale tests: zeta potential, microflotation, settling and turbidity, and isotherm adsorption using total organic carbon.
View Article and Find Full Text PDFMitigation of colloid clay particles is critical during flotation and flocculation processes in mineral processing. Most organic and inorganic mitigation reagents have negative impacts on the environment and human health; therefore, biologically derived substances have been attracting attention as alternative reagents. Given the anisotropic nature of clay surfaces, it is imperative to understand reagent adsorption on the individual edge and basal plane surfaces of clays.
View Article and Find Full Text PDFPhys Chem Chem Phys
February 2022
Aqueous dispersions of geometrically anisometric, nano-sized sodium-montmorillonite (Na-Mt) display a sol-gel transition at very low solids concentrations. The microstructure of the gel formed at very low ionic strengths is considered electrostatically repulsive with a nematic character, and the gel state at ionic strengths where Debye length is of the order of particle size is conjectured to be free of physical aging. We investigated the nature of osmotically prepared Na-Mt dispersions at low ionic strength (∼10 M), below and above the gel point.
View Article and Find Full Text PDFKaolinite particles are geometrically anisometric and electrostatically anisotropic. Until recently, the charge of both basal faces of kaolinite was assumed to be independent of pH, and the isoelectric point (IEP) of the edge surface was thought to occur at pH 4-6. Therefore, kaolinite suspensions were expected to have an edge-face association at low pH.
View Article and Find Full Text PDFA proof-of-concept for the carbonation-assisted processing of ultramafic nickel ores is presented. Carbonation converts serpentine, the primary gangue or undesirable mineral, to magnesite. It prevents slime coating of fine gangue minerals on pentlandite, the main nickel-bearing mineral, during froth flotation, and improves nickel recovery and concentrate grade.
View Article and Find Full Text PDFBioelastomers have been extensively used in tissue engineering applications because of favorable mechanical stability, tunable properties, and chemical versatility. As these materials generally possess low elastic modulus and relatively long gelation time, it is challenging to 3D print them using traditional techniques. Instead, the field of 3D printing has focused preferentially on hydrogels and rigid polyester materials.
View Article and Find Full Text PDFSchizophyllan is a natural polysaccharide that has shown great potential as enhanced oil recovery (EOR) polymer for high-temperature, high-salinity reservoirs. Nevertheless, the adsorption behavior of schizophyllan over carbonate minerals remains ambiguous element towards its EOR applications. Here, we investigate the adsorption of schizophyllan on different carbonate minerals.
View Article and Find Full Text PDFSynthetic polyester elastomeric constructs have become increasingly important for a range of healthcare applications, due to tunable soft elastic properties that mimic those of human tissues. A number of these constructs require intricate mechanical design to achieve a tunable material with controllable curing. Here, the synthesis and characterization of poly(itaconate-co-citrate-co-octanediol) (PICO) is presented, which exhibits tunable formation of elastomeric networks through radical crosslinking of itaconate in the polymer backbone of viscous polyester gels.
View Article and Find Full Text PDFUnderstanding the surface properties and interactions of nonspherical particles is of both fundamental and practical importance in the rheology of complex fluids in various engineering applications. In this work, natural chrysotile, a phyllosilicate composed of 1:1 stacked silica and brucite layers which coil into cylindrical structure, was chosen as a model rod-shaped particle. The interactions of chrysotile brucite-like basal or bilayered edge planes and a silicon nitride tip were measured using an atomic force microscope (AFM).
View Article and Find Full Text PDF