Genes encoding essential components of core cellular processes are typically highly conserved across eukaryotes. However, a small proportion of essential genes are highly taxonomically restricted; there appear to be no similar genes outside the genomes of highly related species. What are the functions of these poorly characterized taxonomically restricted genes (TRGs)? Systematic screens in and previously identified yeast or nematode TRGs that are essential for viability and we find that these genes share many molecular features, despite having no significant sequence similarity.
View Article and Find Full Text PDFA significant challenge of functional genomics is to develop methods for genome-scale acquisition and analysis of cell biological data. Here, we present an integrated method that combines genome-wide genetic perturbation of Saccharomyces cerevisiae with high-content screening to facilitate the genetic description of sub-cellular structures and compartment morphology. As proof of principle, we used a Rad52-GFP marker to examine DNA damage foci in ∼20 million single cells from ∼5,000 different mutant backgrounds in the context of selected genetic or chemical perturbations.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2016
Somatic copy number amplification and gene overexpression are common features of many cancers. To determine the role of gene overexpression on chromosome instability (CIN), we performed genome-wide screens in the budding yeast for yeast genes that cause CIN when overexpressed, a phenotype we refer to as dosage CIN (dCIN), and identified 245 dCIN genes. This catalog of genes reveals human orthologs known to be recurrently overexpressed and/or amplified in tumors.
View Article and Find Full Text PDFHigh-content screening (HCS), which combines automated fluorescence microscopy with quantitative image analysis, allows the acquisition of unbiased multiparametric data at the single cell level. This approach has been used to address diverse biological questions and identify a plethora of quantitative phenotypes of varying complexity in numerous different model systems. Here, we describe some recent applications of HCS, ranging from the identification of genes required for specific biological processes to the characterization of genetic interactions.
View Article and Find Full Text PDFCold Spring Harb Protoc
April 2016
The budding yeastSaccharomyces cerevisiaehas served as the pioneer model organism for virtually all genome-scale methods, including genome sequencing, DNA microarrays, gene deletion collections, and a variety of proteomic platforms. Yeast has also provided a test-bed for the development of systematic fluorescence-based imaging screens to enable the analysis of protein localization and abundance in vivo. Especially important has been the integration of high-throughput microscopy with automated image-processing methods, which has allowed researchers to overcome issues associated with manual image analysis and acquire unbiased, quantitative data.
View Article and Find Full Text PDF