As an essential micronutrient, selenium deficiency is a leading cause of cardiovascular diseases. The heart is continuously beating to deliver blood to the entire body, and this requires a high amount of energy. An adult heart normally obtains 50-70% of its adenosine 5'-triphosphate from fatty acid β-oxidation.
View Article and Find Full Text PDFChem Pharm Bull (Tokyo)
September 2016
The intracellular metabolism of selenium in the brain currently remains unknown, although the antioxidant activity of this element is widely acknowledged to be important in maintaining brain functions. In this study, a comprehensive method for identifying the selenium-binding proteins using PenSSeSPen as a model of the selenium metabolite, selenotrisulfide (RSSeSR, STS), was applied to a complex cell lysate generated from the rat brain. Most of the selenium from L-penicillamine selenotrisulfide (PenSSeSPen) was captured by the cytosolic protein thiols in the form of STS through the thiol-exchange reaction (R-SH+PenSSeSPen→R-SSeSPen+PenSH).
View Article and Find Full Text PDFCurrently, the intracellular reduction and/or transport of selenium still remain unknown. Certain reduced forms of selenium species are thought to be reactive with various endogenous molecules, particularly thiol-containing proteins. In this study, a profiling method for identifying the selenium-binding proteins using L-penicillamine selenotrisulfide (PenSSeSPen) as a model of the selenium metabolic intermediate was applied to the cell lysate generated from the rat liver.
View Article and Find Full Text PDF