Publications by authors named "Erika Troy"

Neuregulin-1β is a member of the neuregulin family of growth factors and is critically important for normal development and functioning of the heart and brain. A recombinant version of neuregulin-1β, cimaglermin alfa (also known as glial growth factor 2 or GGF2) is being investigated as a possible therapy for heart failure. Previous studies suggest that neuregulin-1β stimulation of skeletal muscle increases glucose uptake and, specifically, sufficient doses of cimaglermin alfa acutely produce hypoglycemia in pigs.

View Article and Find Full Text PDF

Failure of oligodendrocyte precursor cells (OPCs) to differentiate and remyelinate axons is thought to be a major cause of the limited ability of the central nervous system to repair plaques of immune-mediated demyelination in multiple sclerosis (MS). Current therapies for MS aim to lessen the immune response in order to reduce the frequency and severity of attacks, but these existing therapies do not target remyelination or stimulate repair of the damaged tissue. Thus, the promotion of OPC differentiation and remyelination is potentially an important therapeutic goal.

View Article and Find Full Text PDF

Neuregulins are important growth factors involved in cardiac development and response to stress. Certain isoforms and fragments of neuregulin have been found to be cardioprotective. The effects of a full-length neuregulin-1β isoform, glial growth factor 2 (GGF2; USAN/INN; also called cimaglermin) were investigated in vitro.

View Article and Find Full Text PDF

Background: Peripheral nerve injury (PNI) can result in neurodegenerative changes leading to motor, sensory and autonomic dysfunction. Injury to the rat sciatic nerve is used to model pathophysiologic processes following PNI and assess the efficacy of therapeutic interventions. Frequently, temporal changes in the sciatic functional index (SFI), a measure of sensorimotor integration are measured in rats to assess functional recovery following sciatic nerve injury.

View Article and Find Full Text PDF

Magnesium (Mg) homeostasis is impaired following spinal cord injury (SCI) and the loss of extracellular Mg contributes to secondary injury by various mechanisms, including glutamate neurotoxicity. The neuroprotective effects of high dose Mg supplementation have been reported in many animal models. Recent studies found that lower Mg doses also improved neurologic outcomes when Mg was formulated with polyethylene glycol (PEG), suggesting that a PEG/ Mg formulation might increase Mg delivery to the injured spinal cord, compared with that of MgSO alone.

View Article and Find Full Text PDF