We have previously reported the synthesis, in vitro and in silico activities of new GABA analogues as inhibitors of the GABA-AT enzyme from , where the nitrogen atom at the γ-position is embedded in heterocyclic scaffolds. With the goal of finding more potent inhibitors, we now report the synthesis of a new set of GABA analogues with a broader variation of heterocyclic scaffolds at the γ-position such as thiazolidines, methyl-substituted piperidines, morpholine and thiomorpholine and determined their inhibitory potential over the GABA-AT enzyme from . These structural modifications led to compound which showed a 73% inhibition against this enzyme.
View Article and Find Full Text PDFγ-Aminobutyric acid (GABA) is the most important inhibitory neurotransmitter in the central nervous system, and a deficiency of GABA is associated with serious neurological disorders. Due to its low lipophilicity, there has been an intensive search for new molecules with increased lipophilicity to cross the blood-brain barrier to raise GABA concentrations. We have designed and evaluated in vitro and in silico some new analogues of GABA, where the nitrogen atom at the γ-position is embedded in heterocyclic scaffolds and determined their inhibitory potential over the GABA-AT enzyme from .
View Article and Find Full Text PDF