Upon fertilization, male and female nuclei fuse to form the zygotic nucleus in angiosperms. Karyogamy is considered to be essential for proper embryogenesis; however, the transcriptional dynamics during karyogamy in plant zygotes remain unclear. In this study, we performed a single-cell transcriptome analysis of rice zygotes at six early developmental stages (15 min, 30 min, 1 h, 2 h, 4 h, and 6 h after gamete fusion) to reveal gene expression profiles during karyogamy in plant zygotes.
View Article and Find Full Text PDFTargeted mutagenesis programmable nucleases including the clustered regulatory interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) (CRISPR/Cas9) system has been broadly utilized to generate genome-edited organisms including flowering plants. To date, specific expression of Cas9 protein and guide RNA (gRNA) in reproductive cells or tissues is considered one of the most effective genome-editing approaches for heritable targeted mutagenesis. In this report, we review recent advances in genome editing methods for reproductive cells or tissues, which have roles in transmitting genetic material to the next-generation, such as egg cells, pollen grains, zygotes, immature zygotic embryos, and shoot apical meristems (SAMs).
View Article and Find Full Text PDFEndosperm-embryo development in flowering plants is regulated coordinately by signal exchange during seed development. However, such a reciprocal control mechanism has not been clearly identified. In this study, we identified an endosperm-specific gene, LBD35, expressed in an embryonic development-dependent manner, by a comparative transcriptome and cytological analyses of double-fertilized and single-fertilized seeds prepared by using the kokopelli mutant, which frequently induces single fertilization events.
View Article and Find Full Text PDFSetaria viridis, the wild ancestor of foxtail millet (Setaria italica), is an effective model plant for larger C crops because S. viridis has several desirable traits, such as short generation time, prolific seed production and a small genome size. These advantages are well suited for investigating molecular mechanisms in angiosperms, especially C crop species.
View Article and Find Full Text PDFReactive oxygen species (ROS) play essential roles in plant development and environmental stress responses. In this study, ROS dynamics, the glutathione redox status, the expression and subcellular localization of glutathione peroxidases (GPXs), and the effects of inhibitors of ROS-mediated metabolism were investigated along with fertilization and early zygotic embryogenesis in rice (Oryza sativa). Zygotes and early embryos exhibited developmental arrest upon inhibition of ROS production.
View Article and Find Full Text PDFFacing the challenges of the world's food sources posed by a growing global population and a warming climate will require improvements in plant breeding and technology. Enhancing crop resiliency and yield via genome engineering will undoubtedly be a key part of the solution. The advent of new tools, such as CRIPSR/Cas, has ushered in significant advances in plant genome engineering.
View Article and Find Full Text PDFPolyethylene glycol calcium (PEG-Ca)-mediated transfection allows rapid and efficient examination to analyze diverse cellular functions of genes of interest. In plant cells, macromolecules, such as DNA, RNA and protein, are delivered into protoplasts derived from somatic tissues or calli via PEG-Ca transfection. To broaden and develop the scope of investigations using plant gametes and zygotes, a procedure for direct delivery of macromolecules into these cells has recently been established using PEG-Ca transfection.
View Article and Find Full Text PDFPolyploid zygotes with a paternal gamete/genome excess exhibit arrested development, whereas polyploid zygotes with a maternal excess develop normally. These observations indicate that paternal and maternal genomes synergistically influence zygote development via distinct functions. In this study, to clarify how paternal genome excess affects zygotic development, the developmental and gene expression profiles of polyspermic rice zygotes were analyzed.
View Article and Find Full Text PDFCarbohydrates (sugars) are an essential energy-source for all life forms. They take a significant share of our daily consumption and are used for biofuel production as well. However, sugarcane and sugar beet are the only two crop plants which are used to produce sugar in significant amounts.
View Article and Find Full Text PDFGenome-editing technology involving the targeted mutagenesis of plants using programmable nucleases has been developing rapidly and has enormous potential in next-generation plant breeding. Its application has been hindered in many cases, however, due to technical hurdles, such as the low rate of macromolecule delivery into plant cells and tissues or difficulties in plant transformation and regeneration. Here, a protocol for CRISPR/Cas9-based genome editing using rice zygotes is described.
View Article and Find Full Text PDFIn angiosperms, fertilization and embryogenesis occur in the embryo sac, which is deeply embedded in ovular tissue. In vitro fertilization (IVF) systems using isolated gametes have been utilized to dissect postfertilization events in angiosperms, such as egg activation, zygotic development, and early embryogenesis. In addition, using IVF systems, interspecific zygotes and polyploid zygotes have been artificially produced, and their developmental profiles/mechanisms have been analyzed.
View Article and Find Full Text PDFMol Reprod Dev
March 2020
Polyploidization has played a major role in the long-term diversification and evolutionary success of angiosperms. Triploid formation among diploid plants, which is generally considered to be achieved by fertilization of an unreduced gamete with a reduced one, has been accepted as a means of polyploid production. In addition, it has been supposed that polyspermy also contributes to the triploid formation in maize, wheat, and some orchids; however, such a mechanism has been considered uncommon because reproducing the polyspermic situation and unambiguously investigating developmental profiles of polyspermic zygotes are difficult.
View Article and Find Full Text PDFTechnology involving the targeted mutagenesis of plants using programmable nucleases has been developing rapidly and has enormous potential in next-generation plant breeding. Notably, the clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein-9 nuclease (Cas9) (CRISPR-Cas9) system has paved the way for the development of rapid and cost-effective procedures to create new mutant populations in plants. Although genome-edited plants from multiple species have been produced successfully using a method in which a Cas9-guide RNA (gRNA) expression cassette and selectable marker are integrated into the genomic DNA by Agrobacterium tumefaciens-mediated transformation or particle bombardment, CRISPR-Cas9 integration increases the chance of off-target modifications, and foreign DNA sequences cause legislative concerns about genetically modified organisms.
View Article and Find Full Text PDFUpon fertilization in angiosperms, one sperm cell fuses with the egg cell to produce a zygote, and, via karyogamy, the parental genetic information is combined to form the diploid zygotic genome. Recently, analyses with parentally imbalanced rice zygotes indicated that parental genomes are utilized synergistically in zygotes with different functions, and that genes transcribed from the paternal or maternal allele might play important roles in zygotic development. Herein, we first conducted single nucleotide polymorphism-based mRNA-sequencing using intersubspecific rice zygotes.
View Article and Find Full Text PDFUpon double fertilization, one sperm cell fuses with the egg cell to form a zygote with a 1:1 maternal-to-paternal genome ratio (1m:1p), and another sperm cell fuses with the central cell to form a triploid primary endosperm cell with a 2m:1p ratio, resulting in formation of the embryo and the endosperm, respectively. The endosperm is known to be considerably sensitive to the ratio of the parental genomes. However, the effect of an imbalance of the parental genomes on zygotic development and embryogenesis has not been well studied, because it is difficult to reproduce the parental genome-imbalanced situation in zygotes and to monitor the developmental profile of zygotes without external effects from the endosperm.
View Article and Find Full Text PDFPolyethylene glycol calcium (PEG-Ca) transfection-mediated analysis allows rapid and efficient examination of gene function. To investigate the diverse cellular functions of genes of interest in plant cells, macromolecules, such as DNA, RNA, and proteins, are delivered into protoplasts prepared from somatic tissues or calli using a PEG-Ca transfection procedure. To take advantage of this macromolecule delivery system in the reproductive and developmental biology of angiosperms, this study established a PEG-Ca transfection system with isolated egg cells and zygotes.
View Article and Find Full Text PDFFertilization is a general feature of eukaryotic uni- and multicellular organisms to restore a diploid genome from female and male gamete haploid genomes. In angiosperms, polyploidization is a common phenomenon, and polyploidy would have played a major role in the long-term diversification and evolutionary success of plants. As for the mechanism of formation of autotetraploid plants, the triploid-bridge pathway, crossing between triploid and diploid plants, is considered as a major pathway.
View Article and Find Full Text PDFPolyploidization is a common phenomenon in angiosperms, and polyploidy has played a major role in the long-term diversification and evolutionary success of plants. Triploid plants are considered as the intermediate stage in the formation of stable autotetraploid plants, and this pathway of tetraploid formation is known as the triploid bridge. As for the mechanism of triploid formation among diploid populations, fusion of an unreduced gamete with a reduced gamete is generally accepted.
View Article and Find Full Text PDFFertilization is a general feature of eukaryotic uni- and multicellular organisms to restore a diploid genome from female and male gamete haploid genomes. In most animals and fucoid algae, polyspermy block occurs at the plasmogamy step. Because the polyspermy barrier in animals and in fucoid algae is incomplete, polyspermic zygotes are generated by multiple fertilization events.
View Article and Find Full Text PDF