Both the rod and cone photoreceptors, along with the retinal pigment epithelium have been experimentally and mathematically shown to work interdependently to maintain vision. Further, the theoredoxin-like rod-derived cone viability factor (RdCVF) and its long form (RdCVFL) have proven to increase photoreceptor survival in experimental results. Aerobic glycolysis is the primary source of energy production for photoreceptors and RdCVF accelerates the intake of glucose into the cones.
View Article and Find Full Text PDFThe retina is highly susceptible to the generation of toxic reactive oxygen species (ROS) that disrupt the normal operations of retinal cells. The glutathione (GSH) antioxidant system plays an important role in mitigating ROS. To perform its protective functions, GSH depends on nicotinamide adenine dinucleotide phosphate (NADPH) produced through the pentose phosphate pathway.
View Article and Find Full Text PDFWe present a mathematical model of key glucose metabolic pathways in two cells of the human retina: the rods and the retinal pigmented epithelium (RPE). Computational simulations of glucose transporter 1 (GLUT1) inhibition in the model accurately reproduce experimental data from conditional knockout mice and reveal that modification of GLUT1 expression levels of both cells differentially impacts their metabolism. We hypothesize that, under glucose scarcity, the RPE's energy producing pathways are altered in order to preserve its functionality, impacting the photoreceptors' outer segment renewal.
View Article and Find Full Text PDFThis work analyzes a mathematical model for the metabolic dynamics of a cone photoreceptor, which is the first model to account for energy generation from fatty acids oxidation of shed photoreceptor outer segments (POS). Multiple parameter bifurcation analysis shows that joint variations in external glucose, the efficiency of glucose transporter 1 (GLUT1), lipid utilization for POS renewal, and oxidation of fatty acids affect the cone's metabolic vitality and its capability to adapt under glucose-deficient conditions. The analysis further reveals that when glucose is scarce, cone viability cannot be sustained by only fueling energy production in the mitochondria, but it also requires supporting anabolic processes to create lipids necessary for cell maintenance and repair.
View Article and Find Full Text PDFRecent experimental and mathematical work has shown the interdependence of the rod and cone photoreceptors with the retinal pigment epithelium in maintaining sight. Accelerated intake of glucose into the cones via the theoredoxin-like rod-derived cone viability factor (RdCVF) is needed as aerobic glycolysis is the primary source of energy production. Reactive oxidative species (ROS) result from the rod and cone metabolism and recent experimental work has shown that the long form of RdCVF (RdCVFL) helps mitigate the negative effects of ROS.
View Article and Find Full Text PDFThe prescription drug epidemic in the United States has gained attention in recent years. Vicodin, along with its generic version, is the country's mostly widely prescribed pain reliever, and it contains a narcotic component that can lead to physical and chemical dependency. The majority of Vicodin abusers were first introduced via prescription, unlike other drugs which are often experienced for the first time due to experimentation.
View Article and Find Full Text PDFPatients affected by retinitis pigmentosa, an inherited retinal disease, experience a decline in vision due to photoreceptor degeneration leading to irreversible blindness. Rod-derived cone viability factor (RdCVF) is the most promising mutation-independent treatment today. To identify pathologic processes leading to secondary cone photoreceptor dysfunction triggering central vision loss of these patients, we model the stimulation by RdCVF of glucose uptake in cones and glucose metabolism by aerobic glycolysis.
View Article and Find Full Text PDFPeople afflicted with diseases such as retinitis pigmentosa and age-related macular degeneration experience a decline in vision due to photoreceptor degeneration, which is currently unstoppable and irreversible. Currently there is no cure for diseases linked to photoreceptor degeneration. Recent experimental work showed that mesencephalic astrocyte-derived neurotrophic factor (MANF) can reduce neuron death and, in particular, photoreceptor death by reducing the number of cells that undergo apoptosis.
View Article and Find Full Text PDFRetinitis pigmentosa (RP) is a family of inherited retinal degenerative diseases that leads to blindness. In many cases the disease-causing allele encodes for a gene exclusively expressed in the night active rod photoreceptors. However, because rod death always leads to cone death affected individuals eventually lose their sight.
View Article and Find Full Text PDFUnderstanding the essential components and processes for coexistence of rods and cones is at the forefront of retinal research. The recent discovery on RdCVF's mechanism and mode of action for enhancing cone survival brings us a step closer to unraveling key questions of coexistence and codependence of these neurons. In this work, we build from ecological and enzyme kinetic work on functional response kinetics and present a mathematical model that allows us to investigate the role of RdCVF and its contribution to glucose intake.
View Article and Find Full Text PDFWe investigated the dynamics of a gene regulatory network controlling the cold shock response in budding yeast, Saccharomyces cerevisiae. The medium-scale network, derived from published genome-wide location data, consists of 21 transcription factors that regulate one another through 31 directed edges. The expression levels of the individual transcription factors were modeled using mass balance ordinary differential equations with a sigmoidal production function.
View Article and Find Full Text PDFWe present a mathematical model that describes treatment of a fungal infection in an immune compromised patient in which both susceptible and resistant strains are present with a mutation allowing the susceptible strain to become resistant as well as a back mutation allowing resistant fungus to again become susceptible. The resulting nonlinear differential equations model the biological outcome, in terms of strain growth and cell number, when an individual is treated with a fungicidal or fungistatic drug. The model demonstrates that under any levels of the drug both strains will be in stable co-existence and high levels of treatment will never completely eradicate the susceptible strain.
View Article and Find Full Text PDFThis article details the history, logistical operations, and design philosophy of the Mathematical and Theoretical Biology Institute (MTBI), a nationally recognized research program with an 18-year history of mentoring researchers at every level from high school through university faculty, increasing the number of researchers from historically underrepresented minorities, and motivating them to pursue research careers by allowing them to work on problems of interest to them and supporting them in this endeavor. This mosaic profile highlights how MTBI provides a replicable multi-level model for research mentorship.
View Article and Find Full Text PDFJ Theor Biol
January 2013
Retinitis pigmentosa (RP) is a group of inherited degenerative eye diseases characterized by mutations in the genetic structure of the photoreceptors that leads to the premature death of both rod and cone photoreceptors. Defects in particular genes encoding proteins that are involved in either the photoreceptor structure, phototransduction cascades, or visual cycle are expressed in the rods but ultimately affect both types of cells. RP is "typically" manifested by a steady death of rods followed by a period of stability in which cones survive initially and then inevitably die too.
View Article and Find Full Text PDFWe present a mathematical model that describes treatment of a fungal infection in an immune compromised patient in which both susceptible and resistant strains are present. The resulting nonlinear differential equations model the biological outcome, in terms of strain growth and cell number, when an individual, who has both a susceptible and a resistant population of fungus, is treated with a fungicidal or fungistatic drug. The model demonstrates that when the drug is only successful at treating the susceptible strain, low levels of the drug cause both strains to be in stable co-existence and high levels eradicate the susceptible strain while allowing the resistant strain to persist or to multiply unchecked.
View Article and Find Full Text PDFThe interactions between rods and cones in the retina have been the focus of innumerable experimental and theoretical biological studies in previous decades yet the understanding of these interactions is still incomplete primarily due to the lack of a unified concept of cone photoreceptor organization and its role in retinal diseases. The low abundance of cones in many of the non-primate mammalian models that have been studied make conclusions about the human retina difficult. A more complete knowledge of the human retina is crucial for counteracting the events that lead to certain degenerative diseases, in particular those associated with photoreceptor cell death (e.
View Article and Find Full Text PDFAn SIS/SAS model of gonorrhea transmission in a population of highly active men-having-sex-with-men (MSM) is presented in this paper to study the impact of safe behavior on the dynamics of gonorrhea prevalence. Safe behaviors may fall into two categories-prevention and self-awareness. Prevention will be modeled via consistent condom use and self-awareness via STD testing frequency.
View Article and Find Full Text PDF