Kelch-like 1 (KLHL1) is a neuronal actin-binding protein that modulates voltage-gated calcium channels. The KLHL1 knockout (KO) model displays altered calcium channel expression in various brain regions. We analyzed the electrical behavior of hypothalamic POMC (proopiomelanocortin) neurons and their response to leptin.
View Article and Find Full Text PDFLeptin regulates hypothalamic POMC (pro-opiomelanocortin) neurons by inducing TRPC (Transient Receptor Potential Cation) channel-mediate membrane depolarization. The role of TRPC channels in POMC neuron excitability is clearly established; however, it remains unknown whether their activity alone is sufficient to trigger excitability. Here we show that the right-shift voltage induced by the leptin-induced TRPC channel-mediated depolarization of the resting membrane potential brings T-type channels into the active window current range, resulting in an increase of the steady state T-type calcium current from 40 to 70% resulting in increased intrinsic excitability of POMC neurons.
View Article and Find Full Text PDFKelch-like 1 (KLHL1) is a neuronal actin-binding protein that modulates voltage-gated CaV2.1 (P/Q-type) and CaV3.2 (α1H T-type) calcium channels; KLHL1 knockdown experiments (KD) cause down-regulation of both channel types and altered synaptic properties in cultured rat hippocampal neurons (Perissinotti et al.
View Article and Find Full Text PDFThe actin-binding protein Kelch-like 1 (KLHL1) can modulate voltage-gated calcium channels in vitro. KLHL1 interacts with actin and with the pore-forming subunits of Cav2.1 and CaV3.
View Article and Find Full Text PDFThe Kelch-like 1 protein (KLHL1) is a neuronal actin-binding protein that modulates calcium channel function. It increases the current density of Ca(v)3.2 (α(1H)) calcium channels via direct interaction with α(1H) and actin-F, resulting in biophysical changes in Ca(v)3.
View Article and Find Full Text PDFGrowth factors and hormones have both short- and long-term regulatory effects on the functional expression of voltage gated Ca2+ (CaV) channels. In particular, it has been reported that chronic treatment with insulin upregulates T-type channel membrane expression, leading to an increase in current density in clonal pituitary GH3 cells. Though this regulatory action may result from alterations in gene expression, recent studies have demonstrated also that endosomal trafficking provides a mechanism for dynamic changes in CaV channel membrane density.
View Article and Find Full Text PDFPhysical exercise produces a variety of psychophysical effects, including altered pain perception. Elevated levels of centrally produced endorphins or endocannabinoids are implicated as mediators of exercise-induced analgesia. The effect of exercise on the development and persistence of disease-associated acute/chronic pain remains unclear.
View Article and Find Full Text PDFThe neuronal protein Kelch-like 1 (KLHL1) is a novel actin-binding protein that modulates neuronal structure and function. KLHL1 knockout mice exhibit dendritic atrophy in cerebellar Purkinje neurons and motor dysfunction. Interestingly, KLHL1 upregulates high and low voltage-gated calcium currents (Ca(V)2.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
March 2007
Spinocerebellar ataxia type 6 (SCA6) is a neurodegenerative disease of the cerebellum and inferior olives characterized by a late-onset cerebellar ataxia and selective loss of Purkinje neurons. SCA6 arises from an expansion of the polyglutamine tract located in exon 47 of the alpha(1A) (P/Q-type calcium channel) gene from a nonpathogenic size of 4 to 18 glutamines (CAG(4-18)) to CAG(19-33) in SCA6. The molecular basis of SCA6 is poorly understood.
View Article and Find Full Text PDFSeveral human channelopathies result from mutations in alpha1A, the pore-forming subunit of P/Q-type Ca2+ channels, conduits of presynaptic Ca2+ entry for evoked neurotransmission. We found that wild-type human alpha1A subunits supported transmission between cultured mouse hippocampal neurons equally well as endogenous mouse alpha1A, whereas introduction of impermeant human alpha1A hampered the effect of endogenous subunits. Thus, presynaptic P/Q-type channels may compete for channel type-preferring "slots" that limit their synaptic effectiveness.
View Article and Find Full Text PDFAt central synapses, P/Q-type Ca(2+) channels normally provide a critical Ca(2+) entry pathway for neurotransmission. Nevertheless, we found that nerve terminals lacking alpha(1A) (Ca(V)2.1), the pore-forming subunit of P/Q-type channels, displayed a remarkable preservation of synaptic function.
View Article and Find Full Text PDFDifferent types of voltage-activated Ca(2+) channels have been established based on their molecular structure and pharmacological and biophysical properties. One of them, the P/Q-type, is the main channel involved in nerve-evoked neurotransmitter release at neuromuscular junctions and the immunological target in Eaton-Lambert Syndrome. At adult neuromuscular junctions, L- and N-type Ca(2+) channels become involved in transmitter release only under certain experimental or pathological conditions.
View Article and Find Full Text PDFTransmission at the mouse neuromuscular junction normally relies on P/Q-type channels, but became jointly dependent on both N- and R-type Ca(2+) channels when the PQ-type channel alpha(1A) subunit was deleted. R-type channels lay close to Ca(2+) sensors for exocytosis and I(K(Ca)) channel activation, like the P/Q-type channels they replaced. In contrast, N-type channels were less well localized, but abundant enough to influence secretion strongly, particularly when action potentials were prolonged.
View Article and Find Full Text PDFWe show that alpha and betaCaMKII are inversely regulated by activity in hippocampal neurons in culture: the alpha/beta ratio shifts toward alpha during increased activity and beta during decreased activity. The swing in ratio is approximately 5-fold and may help tune the CaMKII holoenzyme to changing intensities of Ca(2+) signaling. The regulation of CaMKII levels uses distinguishable pathways, one responsive to NMDA receptor blockade that controls alphaCaMKII alone, the other responsive to AMPA receptor blockade and involving betaCaMKII and possibly further downstream effects of betaCaMKII on alphaCaMKII.
View Article and Find Full Text PDF