Commercially available near-infrared (NIR) dyes, including indocyanine green (ICG), display an end-tail of the fluorescence emission spectrum detectable in the short-wave infrared (SWIR) window. Imaging methods based on the second NIR spectral region (1,000-1,700 nm) are gaining interest within the biomedical imaging community due to minimal autofluorescence and scattering, allowing higher spatial resolution and depth sensitivity. Using a SWIR fluorescence imaging device, the properties of ICG vs.
View Article and Find Full Text PDFThe strong molecular interaction between biotin and streptavidin is widely used in the growing field of nucleic acid nanotechnology. Several biotin labeled oligonucleotide tools have been developed for the detection of biological molecules as well as for protein purification. For these reasons, biotinylation can be considered one of the main chemical reactions for nucleic acid labeling.
View Article and Find Full Text PDFNeural stem cells (NSCs) have become promising tools for basic research and regenerative medicine. Intracerebral transplantation studies have suggested that these cells may be able to adopt neuronal phenotypes typical of their engraftment site and to establish appropriate connections in the recipient circuitries. Here, we examined the in vivo neurogenic competence of well-characterized NSC lines subjected to in vitro priming and subsequent implantation into the adult intact mouse brain.
View Article and Find Full Text PDFCurrently available effective treatments of the diseased or damaged central nervous system (CNS) are restricted to a limited pharmacological relief of symptoms or those given to avoid further damage. Therefore the search is on for treatments that can restore function in the CNS. During recent years replacement of damaged neurons by cell transplantation is being enthusiastically explored as a potential treatment for many neurodegenerative diseases, stroke and traumatic brain injury.
View Article and Find Full Text PDFPluripotent mouse embryonic stem (ES) cells multiply in simple monoculture by symmetrical divisions. In vivo, however, stem cells are generally thought to depend on specialised cellular microenvironments and to undergo predominantly asymmetric divisions. Ex vivo expansion of pure populations of tissue stem cells has proven elusive.
View Article and Find Full Text PDFThe identification of intracellular molecules and soluble factors that are important for neuronal differentiation and survival are of critical importance for development of therapeutic strategies for brain diseases. First, the activity of these factors/molecules may be enhanced in vivo in the attempt to induce proper neuronal differentiation and integration of the resident stem cells. Second, these factors may be applied ex vivo to increase the recovery of neurons from stem cells.
View Article and Find Full Text PDF