Publications by authors named "Erika Plettner"

Varroa destructor Oud (Acari: Varroidae) is a harmful ectoparasite of Apis mellifera L. honey bees causing widespread colony losses in Europe and North America. To control populations of these mites, beekeepers have an arsenal of different treatments, including both chemical and nonchemical options.

View Article and Find Full Text PDF

Sol g 2 is the major protein in fire ant venom. It shares the highest sequence identity with Sol i 2 () and shares high structural homology with LmaPBP (pheromone-binding protein (PBP) from the cockroach ). We examined the specific Sol g 2 protein ligands from fire ant venom.

View Article and Find Full Text PDF

The honey bee is responsible for pollination of a large proportion of crop plants, but the health of honey bee populations has been challenged by the parasitic mite Varroa destructor. Mite infestation is the main cause of colony losses during the winter months, which causes significant economic challenges in apiculture. Treatments have been developed to control the spread of varroa.

View Article and Find Full Text PDF

Fluorescent analogues of the gypsy moth sex pheromone (+)-disparlure (1) and its enantiomer (-)-disparlure (ent-1) were designed, synthesized, and characterized. The fluorescently labelled analogues 6-FAM (+)-disparlure and 1a 6-FAM (-)-disparlure ent-1a were prepared by copper-catalyzed azide-alkyne cycloaddition of disparlure alkyne and 6-FAM azide. These fluorescent disparlure analogues 1a and ent-1a were used to measure disparlure binding to two pheromone-binding proteins from the gypsy moth, LdisPBP1 and LdisPBP2.

View Article and Find Full Text PDF

Pheromone-binding proteins (PBPs) are small, water-soluble proteins found in the lymph of pheromone-sensing hairs. PBPs are essential in modulating pheromone partitioning in the lymph and at pheromone receptors of olfactory sensory neurons. The function of a PBP is associated with its ability to structurally convert between two conformations.

View Article and Find Full Text PDF

The camphor-degrading microorganism, Pseudomonas putida strain ATCC 17453, is an aerobic, gram-negative soil bacterium that uses camphor as its sole carbon and energy source. The genes responsible for the catabolic degradation of camphor are encoded on the extra-chromosomal CAM plasmid. A monooxygenase, cytochrome P450, mediates hydroxylation of camphor to 5-exo-hydroxycamphor as the first and committed step in the camphor degradation pathway, requiring a dioxygen molecule (O) from air.

View Article and Find Full Text PDF
Preface: Cytochrome P450.

Biochim Biophys Acta Proteins Proteom

January 2018

View Article and Find Full Text PDF

Cytochrome P450 (a camphor hydroxylase) from the soil bacterium Pseudomonas putida shows potential importance in environmental applications such as the degradation of chlorinated organic pollutants. Seven P450 mutants generated from Sequence Saturation Mutagenesis (SeSaM) and isolated by selection on minimal media with either 3-chloroindole or the insecticide endosulfan were studied for their ability to oxidize of 3-chloroindole to isatin. The wild-type enzyme did not accept 3-chloroindole as a substrate.

View Article and Find Full Text PDF

The preparation of enantiopure conformationally restricted alicyclic ethers and their inhibitory activities on the chemosensory organ of the Varroa destructor, a parasite of honey bees, are reported in this article. We tested the effect of enantiopure ethers of cis-5-(2'-hydroxyethyl)cyclopent-2-en-1-ol on the Varroa chemosensory organ by electrophysiology, for their ability to inhibit the responses to two honey bee-produced odors that are important for the mite to locate its host: nurse bee head space odor and (E)-β-ocimene, a honey bee brood pheromone. Previous work with the racemic compounds showed that they suppress the mite's olfactory response to its bee host, which led to incorrect host choice.

View Article and Find Full Text PDF

Strengthening the host immune system to fully exploit its potential as antimicrobial defense is vital in countering antibiotic resistance. Chemical compounds released during bidirectional host-pathogen cross-talk, which follows a sensing-response paradigm, can serve as protective mediators. A potent, diffusible messenger is hydrogen peroxide (H2O2), but its consequences on extracellular pathogens are unknown.

View Article and Find Full Text PDF

Pheromone-binding proteins (PBPs) are believed to control diffusion of pheromones in sensory hairs of insects. The interactions of gypsy moth (Lymantria dispar) PBPs with the sex attractant pheromone, (+)-Disparlure ((7R,8S)-epoxy-2-methyloctadecane), and the enantioselectivity of recognition are not completely understood. Enantioselectivity is important for L.

View Article and Find Full Text PDF

The cabbage looper, Trichoplusia ni (Hübner) (Lepidoptera: Noctuidae), is one of the most damaging insect pests of cabbage (Brassica oleracea variety capitata) and broccoli (B. oleracea variety italica) in North America. Leaf-feeding larvae attack crucifer and vegetable crops in greenhouses and fields.

View Article and Find Full Text PDF

The gypsy moth utilizes a pheromone, (7R,8S)-2-methyl-7,8-epoxyoctadecane, for mate location. The pheromone is detected by sensory hairs (sensilla) on the antennae of adult males. Sensilla contain the dendrites of olfactory neurons bathed in lymph, which contains pheromone binding proteins (PBPs).

View Article and Find Full Text PDF

Honeybee workers express a pronounced age-dependent polyethism switching from various indoor duties to foraging outside the hive. This transition is accompanied by tremendous changes in the sensory environment that sensory systems and higher brain centers have to cope with. Foraging and age have earlier been shown to be associated with volume changes in the mushroom bodies (MBs).

View Article and Find Full Text PDF

Background: The ectoparasitic mite, Varroa destructor, is considered to be one of the most significant threats to apiculture around the world. Chemical cues are known to play a significant role in the host-finding behavior of Varroa. The mites distinguish between bees from different task groups, and prefer nurses over foragers.

View Article and Find Full Text PDF

ABSTRACT We used the red flour beetle, Tribolium castaneum Herbst (Coleoptera: Tenebrionidae), to compare three feeding bioassay techniques using flour disks. The area (scanner or digital photographs) and mass (sensitive balance) of the same flour disks were measured daily for 1 or 2 wk to assess feeding by insects. The loss in mass and area over 4 h was measured, as some variation over time was noticed in the disks with no insects feeding on them.

View Article and Find Full Text PDF

Some dialkoxybenzenes are promising new insect control agents. These compounds mimic naturally occurring odorants that modulate insect behavior. Before applying these compounds, however, their persistence and biodegradability at the application site and in the environment should be understood.

View Article and Find Full Text PDF

P450(cam) (CYP101A1) is a bacterial monooxygenase that is known to catalyze the oxidation of camphor, the first committed step in camphor degradation, with simultaneous reduction of oxygen (O2). We report that P450(cam) catalysis is controlled by oxygen levels: at high O2 concentration, P450(cam) catalyzes the known oxidation reaction, whereas at low O2 concentration the enzyme catalyzes the reduction of camphor to borneol. We confirmed, using (17)O and (2)H NMR, that the hydrogen atom added to camphor comes from water, which is oxidized to hydrogen peroxide (H2O2).

View Article and Find Full Text PDF

Dialkoxybenzenes constitute a class of organic compounds with anti feeding and oviposition effects on the cabbage looper, Trichoplusia ni. Among them, 1-allyloxy-4-propoxybenzene has the highest feeding deterrence activity and potential for development as commercial insect control agent. To develop this compound, its fate in the environment needs to be studied.

View Article and Find Full Text PDF

Adult female gypsy moths produce a sex pheromone (+)-(7R,8S)-2-methyl-7,8-epoxyoctadecane, (+)-disparlure, to attract male gypsy moths. To better understand the recognition of (+)-disparlure by the male's olfactory system, we synthesized racemic and enantiopure oxa and thia analogs of (+)-disparlure (ee>98%). Ab initio calculations of the conformeric landscapes around the dihedral angles C5-6-7-8 and C7-8-9-10 of (+)-disparlure and corresponding dihedral angles of analogs revealed that introduction of the heteroatom changes the conformeric landscape around these important epitopes.

View Article and Find Full Text PDF

Honey bees allocate tasks along reproductive and non-reproductive lines: the queen mates and lays eggs, whereas the workers nurse the brood and forage for food. Among workers, tasks are distributed according to age: young workers nurse and old workers fly out and forage. This task distribution in the colony is further regulated by an increase in juvenile hormone III as workers age and by pheromones.

View Article and Find Full Text PDF

Social work force distribution in honeybee colonies critically depends on subtle adjustments of an age-related polyethism. Pheromones play a crucial role in adjusting physiological and behavioral maturation of nurse bees to foragers. In addition to primer effects of brood pheromone and queen mandibular pheromone--both were shown to influence onset of foraging--direct worker-worker interactions influence adult behavioral maturation.

View Article and Find Full Text PDF

Honey bees undergo a physiological transition from nursing to foraging approximately 21 days after adult emergence. This transition is delayed by ethyl oleate (EO), a primer pheromone produced by foragers when exposed to ethanol from fermented nectar. We demonstrate here that two secreted α/β-hydrolases (BeeBase ID: GB11403 and GB13365) are responsible for the reversible esterification of ethanol with oleic acid, giving EO.

View Article and Find Full Text PDF

P450 enzymes are known for catalyzing hydroxylation reactions of non-activated C-H bonds. For example, P450(cam) from Pseudomonas putida oxidizes (1R)-(+)-camphor to 5-exo-hydroxy camphor and further to 5-ketocamphor. This hydroxylation reaction proceeds via a catalytic cycle in which the reduction of dioxygen (O(2)) is coupled to the oxidation of the substrate.

View Article and Find Full Text PDF

Female gypsy moths emit a pheromone, (+)-disparlure, which the males follow until they locate the emitter. The male moths' antennae are covered with innervated sensory hairs, specialized in detection of the pheromone. The neurons in these sensory hairs are bathed by a solution rich in pheromone-binding protein (PBP).

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessioniugeb5u239kf8n4ba2fidh9f186kvgm1): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once