Lipoxygenases (LOs) catalyze lipid peroxidation and have been implicated in a number of human diseases connected to oxidative stress and inflammation. These enzymes have also attracted considerable attention due to large kinetic isotope effects (30-80) for the rate-limiting hydrogen abstraction step with linoleic acid (LA) as substrate. Herein, we report kinetic isotope effects (KIEs) in the reactions of three human LOs (platelet 12-hLO, reticulocyte 15-hLO-1, and epithelial 15-hLO-2) with arachidonic acid (AA).
View Article and Find Full Text PDFIn wild-type soybean LO-1 (WT sLO-1), Asn694 is a weak sixth ligand that is thought to be critical for enzymatic catalysis. In this investigation, N694G sLO-1 was studied to probe its contribution at this sixth ligand position to the kinetic and spectroscopic properties. The k(cat) value of N694G is approximately 230 times lower than that of WT sLO-1 at 25 degrees C, which can be partially explained by a lowered reduction potential of the iron as seen as a shift in the visible ligand-to-metal charge-transfer band (lambda(max) = 410 nm for N694G and lambda(max) = 425 nm for WT sLO-1).
View Article and Find Full Text PDFLipoxygenases (LO) have been implicated in asthma, immune disorders, and various cancers. As a consequence of these broad biological implications, there is great interest in understanding the effects of naturally occurring and environmental contaminants against its activity. On the basis of our earlier studies indicating that polybrominated diphenol ethers are potent inhibitors to mammalian 15-LO, we expanded our structure-activity study to include marine-derived brominated phenol ethers (including a newly discovered tribrominated diphenyl ether), dioxins, and bastadins, as well as the synthetic brominated fire retardants, brominated bisphenol A (BBPA), and polybrominated diphenyl ethers (PBDEs).
View Article and Find Full Text PDFMammalian lipoxygenases have been implicated in several inflammatory disorders; however, the details of the kinetic mechanism are still not well understood. In this paper, human platelet 12-lipoxygenase (12-hLO) and human reticulocyte 15-lipoxygenase-1 (15-hLO) were tested with arachidonic acid (AA) and linoleic acid (LA), respectively, under a variety of changing experimental conditions, such as temperature, dissolved oxygen concentration, and viscosity. The data that are presented show that 12-hLO and 15-hLO have slower rates of product release (k(cat)) than soybean lipoxygenase-1 (sLO-1), but similar or better rates of substrate capture for the fatty acid (k(cat)/K(M)) or molecular oxygen [k(cat)/K(M(O)2)].
View Article and Find Full Text PDF