Publications by authors named "Erika Medeiros"

Biochar is an effective material for enhancing soil ecosystem services. However, the specific impacts of biochar on microbial indicators, particularly in degraded soils, remain poorly understood. This study aimed to evaluate the effects of biochar produced from cashew residues and sewage sludge, in a highly degraded soil, on microbial indicators.

View Article and Find Full Text PDF
Article Synopsis
  • Invasive candidiasis (IC) caused by non-albicans Candida is on the rise globally, especially in pediatrics, but there is limited data on its characteristics and treatment responses in children.
  • A study in a southern Brazilian children's hospital analyzed 123 non-duplicate Candida isolates from 2016 to 2021, finding a range of IC incidence between 0.88-1.55 cases per 1000 hospitalized patients and a mortality rate of 20.3%, with many cases occurring in patients under 13 months and linked to ICU admissions.
  • The research noted that the predominant species were non-albicans Candida (70.8%), with most isolates producing biofilm, but there was no significant clonal
View Article and Find Full Text PDF

Land desertification poses a significant challenge in the Brazilian semiarid region, encompassing a substantial portion of the country. Within this region, the detrimental effects of human activities, particularly unsuitable anthropic actions, have resulted in diminished vegetation cover and an accelerated rate of soil erosion. Notably, practices such as overgrazing and the conversion of native forests into pasturelands have played a pivotal role in exacerbating the process of land desertification.

View Article and Find Full Text PDF

Imazethapyr and flumioxazin are widely recommended herbicides for soybean fields due to their broad-spectrum effects. However, although both herbicides present low persistence, their potential impact on the community of plant growth-promoting bacteria (PGPB) is unclear. To address this gap, this study assessed the short-term effect of imazethapyr, flumioxazin, and their mixture on the PGPB community.

View Article and Find Full Text PDF

Chromium (Cr) contamination can affect microorganisms in the soil, but the response of the microbial community in the rhizosphere of plants grown in Cr-contaminated soils is poorly understood. Therefore, this study assessed the microbial community, by amplicon sequencing, in the rhizosphere of maize and cowpea growing in uncontaminated (∼6.0 mg kg Cr) and Cr-contaminated soils (∼250 mg kg Cr).

View Article and Find Full Text PDF

Bacteria have potential to tolerate and reduce metals. This study evaluated the potential of selected bacterial strains in tolerating and reducing chromium (Cr). Six bacterial strains (Rhizobium miluonense LCC01, LCC04, LCC05, and LCC69; Rhizobium pusense LCC43; and Agrobacterium deltaense LCC50) showed tolerance to Cr(VI) (16 and 32 μg mL), reduction potential of Cr(VI) (from 50 to 80%), and efficiency in producing exopolysaccharides.

View Article and Find Full Text PDF

Soil desertification has a significant social, economic, and environmental impact worldwide. Mycorrhizal diversity remains poorly understood in semiarid regions impacted by desertification, especially in Brazilian drylands. More importantly, positive impacts of grazing exclusion on mycorrhizal communities are still incipient.

View Article and Find Full Text PDF

Tissue-engineered skin constructs, including bi-layered living cellular constructs (BLCC) used in the treatment of chronic wounds, are structurally/functionally complex. While some work has been performed to understand their mechanisms, the totality of how BLCC may function in wound healing remains unknown. To this end, we have developed a delayed wound healing model to test BLCC cellular and molecular mechanisms of action.

View Article and Find Full Text PDF

Soils from Brazilian semiarid regions are highly vulnerable to desertification due to their geology, climate, human actions, and intensive land use that contribute to desertification. Therefore, areas under desertification have increased in the Brazilian semiarid region and it has negatively changed the soil bacterial and archaeal communities and their functionality. On the other hand, although restoration strategies are expensive and there are few soils restoration programs, some practices have been applied to restore these soils under desertification.

View Article and Find Full Text PDF

The data included in this article supplement the research article titled "Forest-to-pasture conversion modifies the soil bacterial community in Brazilian dry forest Caatinga (manuscript ID: STOTEN-D-21-19067R1)". This data article included the analysis of 18 chemical variables in 36 composite samples (included 4 replicates) of soils from the Microregion of Garanhuns (Northeast Brazil) and also partial 16S rRNA gene sequences from genomic DNA extracted from 27 of these samples (included 3 best quality replicates) for paired-end sequencing (up to 2 × 300 bp) in Illumina MiSeq platform (NCBI - BioProject accession: PRJNA753707). Soils were collected in August 2018 in a tropical subhumid region from the Brazilian Caatinga, along with 27 composite samples from the aboveground part of pastures to determine nutritional quality based on leaf N content.

View Article and Find Full Text PDF

Soils comprise a huge fraction of the world's biodiversity, contributing to several crucial ecosystem functions. However, how the forest-to-pasture conversion impact soil bacterial diversity remains poorly understood, mainly in the Caatinga biome, the largest tropical dry forest of the world. Here, we hypothesized that forest-to-pasture conversion would shape the microbial community.

View Article and Find Full Text PDF

Biochar has been used to reuse the agro-industrial wastes and improve soil quality. Several studies have been carried out to show the impact of biochar on physical and chemical soil attributes. However, there are still gaps regarding the effects on as microbial biomass and enzymatic activities that are important to determine sensitive indicators to evaluate changes in management practices.

View Article and Find Full Text PDF

This study aimed to evaluate the production of fungal chitosan (FuChi) from Mucorales fungi cultivated in a cashew apple juice (CAJ) and cheese whey (CW) mixture, and to determine the growth-inhibitory effect of this biopolymer against Fusarium solani CFF109 and Scytalidium lignicola CMM1098, which cause root rot disease in cassava plants. Cunninghamella phaeospora UCP 1303 and Cunninghamella elegans UCP 1306 showed the highest FuChi production in screening assay, being selected to a CCRD 2 design to analyze the influence of different CAJ and CW concentrations in the increase of FuChi production. All nine Mucorales fungi cultivated in CAJ-CW medium, showing FuChi production in the range of 27.

View Article and Find Full Text PDF

For patients with extensive burns or donor site scarring, the limited availability of autologous and the inevitable rejection of allogeneic skin drive the need for new alternatives. Existing engineered biologic and synthetic skin analogs serve as temporary coverage until sufficient autologous skin is available. Here we report successful engraftment of a self-assembled bilayered skin construct derived from autologous skin punch biopsies in a porcine model.

View Article and Find Full Text PDF

Background: Deficiency of autologous skin for reconstruction of severe wounds is a major problem in plastic surgery. Autologous substitutes can provide additional coverage, but due to the duration of production, treatment is significantly delayed. The allogeneic approach offers a potential of having an off-the-shelf solution for the immediate application.

View Article and Find Full Text PDF

Tannase is an enzyme that hydrolyzes esters and lateral bonds of tannins, such as tannic acid, releasing glucose and gallic acid and stands out in the clarification of wines and juices. Fungi of the genera Aspergillus and Penicillium are excellent producers of this enzyme. The search for fungi that produce high levels of tannase as well as new substrates for the enzyme production by the SSF is required.

View Article and Find Full Text PDF

Deletion or inhibition of myostatin in mammals has been demonstrated to markedly increase muscle mass by hyperplasia, hypertrophy, or a combination of both. Despite a remarkably high degree of conservation with the mammalian protein, the function of myostatin remains unknown in fish, many species of which continue muscle growth throughout the lifecycle by hyperplasia. Transgenic rainbow trout (Oncorhynchus mykiss) overexpressing follistatin, one of the more efficacious antagonists of myostatin, were produced to investigate the effect of this protein on muscle development and growth.

View Article and Find Full Text PDF