Publications by authors named "Erika M Skaggs"

Targeting tumor metabolism through dietary interventions is an area of growing interest, and may help to improve the significant mortality of aggressive cancers, including non-small cell lung cancer (NSCLC). Here we show that the restriction of methionine in the aggressive KRAS-mutant NSCLC autochthonous mouse model drives decreased tumor progression and increased carboplatin treatment efficacy. Importantly, methionine restriction during early stages of tumorigenesis prevents the lineage switching known to occur in the model, and alters the tumor immune microenvironment (TIME) to have fewer tumor-infiltrating neutrophils.

View Article and Find Full Text PDF

Unlabelled: Two important factors that contribute to resistance to immune checkpoint inhibitors (ICI) are an immune-suppressive microenvironment and limited antigen presentation by tumor cells. In this study, we examine whether inhibition of the methyltransferase enhancer of zeste 2 (EZH2) can increase ICI response in lung squamous cell carcinomas (LSCC). Our in vitro experiments using two-dimensional human cancer cell lines as well as three-dimensional murine and patient-derived organoids treated with two inhibitors of the EZH2 plus IFNγ showed that EZH2 inhibition leads to expression of both MHC class I and II (MHCI/II) expression at both the mRNA and protein levels.

View Article and Find Full Text PDF

Lung cancer heterogeneity is a major barrier to effective treatments and encompasses not only the malignant epithelial cell phenotypes and genetics but also the diverse tumor-associated cell types. Current techniques used to investigate the tumor microenvironment can be time-consuming, expensive, complicated to interpret, and often involves destruction of the sample. Here we use standard hematoxylin and eosin-stained tumor sections and the HALO AI nuclear phenotyping software to characterize 6 distinct cell types (epithelial, mesenchymal, macrophage, neutrophil, lymphocyte, and plasma cells) in both murine lung cancer models and human lung cancer samples.

View Article and Find Full Text PDF