Publications by authors named "Erika Linde"

SAMHD1 is a dNTP triphosphohydrolase governing nucleotide pool homeostasis and can detoxify chemotherapy metabolites controlling their clinical responses. To understand SAMHD1 biology and investigate the potential of targeting SAMHD1 as neoadjuvant to current chemotherapies, we set out to discover selective small-molecule inhibitors. Here, we report a discovery pipeline encompassing a biochemical screening campaign and a set of complementary biochemical, biophysical, and cell-based readouts for rigorous characterization of the screen output.

View Article and Find Full Text PDF

The diarylation and skeletal diversification of unstrained cyclic amines was exploited to expand and modify the favorable properties of this important substrate class with pivotal roles in drug discovery. Cyclic amines were employed in the synthesis of a novel class of amino-substituted diaryliodonium salts, which were converted to highly functionalized diarylamines through an atom-efficient one-pot N-arylation/ring opening reaction with external nucleophiles. The reaction proceeds through in situ formation of a diarylammonium intermediate that undergoes a nucleophilic ring opening by cleavage of the strong C-N bond.

View Article and Find Full Text PDF

N- and O-arylated compounds are prevalent in pharmaceuticals and materials, and efficient approaches for their synthesis are important. Herein, we present an efficient protocol for the diarylation of aliphatic amines and water with two structurally different aryl groups in one single step, yielding highly functionalized diaryl amines and ethers. We describe the synthesis of the required diaryliodonium salts and detail the procedure for the diarylation.

View Article and Find Full Text PDF

Two regioselective, high-yielding one-pot routes to oxygen-bridged cyclic diaryliodonium salts and ortho-aryloxy-substituted acyclic diaryliodonium salts are presented. Starting from easily available ortho-iodo diaryl ethers, complete selectivity in formation of either the cyclic or acyclic product could be achieved by varying the reaction conditions. The complimentary reactivities of these novel ortho-oxygenated iodonium salts were demonstrated through a series of chemoselective arylations under metal-catalyzed and metal-free conditions, to deliver a range of novel, ortho-functionalized diaryl ether derivatives.

View Article and Find Full Text PDF

A transition metal-free N-arylation of primary and secondary amines with diaryliodonium salts is presented. Both acyclic and cyclic amines are well tolerated, providing a large set of N-alkyl anilines. The methodology is unprecedented among metal-free methods in terms of amine scope, the ability to transfer both electron-withdrawing and electron-donating aryl groups, and efficient use of resources, as excess substrate or reagents are not required.

View Article and Find Full Text PDF