Publications by authors named "Erika L Flannery"

The identification of novel drug targets for the purpose of designing small molecule inhibitors is key component to modern drug discovery. In malaria parasites, discoveries of antimalarial targets have primarily occurred retroactively by investigating the mode of action of compounds found through phenotypic screens. Although this method has yielded many promising candidates, it is time- and resource-consuming and misses targets not captured by existing antimalarial compound libraries and phenotypic assay conditions.

View Article and Find Full Text PDF

Over the past 25 years, the global community has faced challenges posed by three distinct outbreaks of coronaviruses including severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The identification of a novel alphacoronavirus canine CoV (CCoV-HuPn2018) in human patients in Malaysia underscores the potential for crossover infections to humans. The threat of the ever-evolving nature of viral infections as well as the lingering health and socioeconomic effects of the recent SARS-CoV-2 pandemic emphasize the urgent need for advanced antiviral drug screening tools that can be quickly implemented to strengthen preparedness and preventive measures against future outbreaks.

View Article and Find Full Text PDF

Background: The infection of the liver by Plasmodium parasites is an obligatory step leading to malaria disease. Following hepatocyte invasion, parasites differentiate into replicative liver stage schizonts and, in the case of Plasmodium species causing relapsing malaria, into hypnozoites that can lie dormant for extended periods of time before activating. The liver stages of Plasmodium remain elusive because of technical challenges, including low infection rate.

View Article and Find Full Text PDF

() is causing the greatest malaria burden, yet the liver stages (LS) of this most important parasite species have remained poorly studied. Here, we used a human liver-chimeric mouse model in combination with a novel fluorescent NF54 parasite line (NF54GFP) to isolate LS-infected hepatocytes and generate transcriptomes that cover the major LS developmental phases in human hepatocytes. RNA-seq analysis of early LS trophozoites two days after infection, revealed a central role of translational regulation in the transformation of the extracellular invasive sporozoite into intracellular LS.

View Article and Find Full Text PDF

Background: The zoonotic simian parasite Plasmodium cynomolgi develops into replicating schizonts and dormant hypnozoites during the infection of hepatocytes and is used as a model organism to study relapsing malaria. The transcriptional profiling of P. cynomolgi liver stages was previously reported and revealed many important biological features of the parasite but left out the host response to malaria infection.

View Article and Find Full Text PDF

is a malaria-causing pathogen that establishes a dormant form in the liver (the hypnozoite), which can activate weeks, months, or years after the primary infection to cause a relapse, characterized by secondary blood-stage infection. These asymptomatic and undetectable latent liver infections present a significant obstacle to the goal of global malaria eradication. We use a human liver-chimeric mouse model (FRG huHep) to study hypnozoite latency and activation in an model system.

View Article and Find Full Text PDF

Latent liver stages termed hypnozoites cause relapsing Plasmodium vivax malaria infection and represent a major obstacle in the goal of malaria elimination. Hypnozoites are clinically undetectable, and presently, there are no biomarkers of this persistent parasite reservoir in the human liver. Here, we have identified parasite and human proteins associated with extracellular vesicles (EVs) secreted from in vivo infections exclusively containing hypnozoites.

View Article and Find Full Text PDF

Latent forms of Plasmodium vivax, called hypnozoites, cause malaria relapses from the liver into the bloodstream and are a major obstacle to malaria eradication. To experimentally assess the impact of a partially protective pre-erythrocytic vaccine on reducing Plasmodium vivax relapses, we developed a liver-humanized mouse model that allows monitoring of relapses directly in the blood. We passively infused these mice with a suboptimal dose of an antibody that targets the circumsporozoite protein prior to challenge with P.

View Article and Find Full Text PDF

The human malaria parasite Plasmodium vivax remains vastly understudied, mainly due to the lack of suitable laboratory models. Here, we report a humanized mouse model to test interventions that block P. vivax parasite transition from liver stage infection to blood stage infection.

View Article and Find Full Text PDF
Article Synopsis
  • Next-generation antimalarials need to be able to cure malaria and block its transmission, highlighting the importance of discovering new druggable molecular pathways.
  • Researchers identified CLK3 as a promising drug target, using a selective inhibitor that affected multiple life stages of the malaria parasite and validated its role through chemogenetics.
  • Inhibiting CLK3 led to the down-regulation of over 400 key parasite genes, resulting in rapid killing of the parasite and prevention of gametocyte development, suggesting potential for both curing and preventing malaria transmission.
View Article and Find Full Text PDF

hypnozoites persist in the liver, cause malaria relapse and represent a major challenge to malaria elimination. Our previous transcriptomic study provided a novel molecular framework to enhance our understanding of the hypnozoite biology (Voorberg-van der Wel A, et al., 2017).

View Article and Find Full Text PDF

Relapses of dormant liver hypnozoites compromise malaria eradication efforts. New radical cure drugs are urgently needed, yet the vast gap in knowledge of hypnozoite biology impedes drug discovery. We previously unraveled the transcriptome of 6 to 7 day-old liver stages, highlighting pathways associated with hypnozoite dormancy (Voorberg-van der Wel et al.

View Article and Find Full Text PDF

Background: Plasmodium vivax is the most geographically widespread of the human malaria parasites, causing 50,000 to 100,000 deaths annually. Plasmodium vivax parasites have the unique feature of forming dormant liver stages (hypnozoites) that can reactivate weeks or months after a parasite-infected mosquito bite, leading to new symptomatic blood stage infections. Efforts to eliminate P.

View Article and Find Full Text PDF

Exosomes are extracellular vesicles of endocytic origin containing molecular signatures implying the cell of origin; thus, they offer a unique opportunity to discover biomarkers of disease. , responsible for more than half of all malaria cases outside Africa, is a major obstacle in the goal of malaria elimination due to the presence of dormant liver stages (hypnozoites), which after the initial infection may reactivate to cause disease. Hypnozoite infection is asymptomatic and there are currently no diagnostic tools to detect their presence.

View Article and Find Full Text PDF

Background: Despite the importance of the Plasmodium berghei oocyst capsule protein (PbCap380) in parasite survival, very little is known about the orthologous Plasmodium falciparum capsule protein (PfCap380). The goal of this work was to study the growth of P. falciparum oocysts using PfCap380 as a developmental marker.

View Article and Find Full Text PDF
Article Synopsis
  • The development of liver-humanized mouse models allows researchers to study the preerythrocytic stages of malaria, a significant advancement compared to the limited existing models for blood stage infection.
  • Current methods involve injecting human red blood cells (hRBCs) to study malaria in small animals, but these treatments do not replicate the natural infection process that occurs via mosquito bites.
  • The newly established FRGN KO mouse model, which incorporates human hepatocytes and allows for both liver and blood stage infection studies, demonstrates promise in testing therapeutic interventions like monoclonal antibodies against specific parasite proteins.
View Article and Find Full Text PDF

Background: The assessment of antibody responses after immunization with radiation-attenuated, aseptic, purified, cryopreserved Plasmodium falciparum sporozoites (Sanaria PfSPZ Vaccine) has focused on IgG isotype antibodies. Here, we aimed to investigate if P. falciparum sporozoite binding and invasion-inhibitory IgM antibodies are induced following immunization of malaria-preexposed volunteers with PfSPZ Vaccine.

View Article and Find Full Text PDF

Chemogenetic characterization through in vitro evolution combined with whole-genome analysis can identify antimalarial drug targets and drug-resistance genes. We performed a genome analysis of 262 parasites resistant to 37 diverse compounds. We found 159 gene amplifications and 148 nonsynonymous changes in 83 genes associated with drug-resistance acquisition, where gene amplifications contributed to one-third of resistance acquisition events.

View Article and Find Full Text PDF

Malaria eradication necessitates new tools to fight the evolving and complex Plasmodium pathogens. These tools include prophylactic drugs that eliminate Plasmodium liver stages and consequently prevent clinical disease, decrease transmission, and reduce the propensity for resistance development. Currently, the identification of these drugs relies on in vitro P.

View Article and Find Full Text PDF

A malaria vaccine that prevents infection will be an important new tool in continued efforts of malaria elimination, and such vaccines are under intense development for the major human malaria parasite (). Antibodies elicited by vaccines can block the initial phases of parasite infection when sporozoites are deposited into the skin by mosquito bite and then target the liver for further development. However, there are currently no standardized in vivo preclinical models that can measure the inhibitory activity of antibody specificities against sporozoite infection via mosquito bite.

View Article and Find Full Text PDF

Effective malaria control and elimination in hyperendemic areas of the world will require treatment of the () blood stage that causes disease as well as the gametocyte stage that is required for transmission from humans to the mosquito vector. Most currently used therapies do not kill gametocytes, a highly specialized, non-replicating sexual parasite stage. Further confounding next generation drug development against is the unknown metabolic state of the gametocyte and the lack of known biochemical activity for most parasite gene products in general.

View Article and Find Full Text PDF

Plasmodium falciparum and Plasmodium vivax cause the majority of human malaria cases. Research efforts predominantly focus on P. falciparum because of the clinical severity of infection and associated mortality rates.

View Article and Find Full Text PDF

Plasmodium falciparum malaria remains the deadliest parasitic disease worldwide. Vaccines targeting the preerythrocytic sporozoite and liver stages have the potential to entirely prevent blood-stage infection and disease, as well as onward transmission. Sporozoite surface and secreted proteins are leading candidates for inclusion in a preerythrocytic stage-specific, antibody-based vaccine.

View Article and Find Full Text PDF