Publications by authors named "Erika Houtz"

As per- and polyfluoroalkyl substances (PFAS) infiltrate the environment via industrial, commercial, and domestic sources, the demand for robust, cost-effective, and straightforward analytical assays intensifies to enhance PFAS characterization and quantification. To address this demand, this study introduces a novel UV-HO-TOP assay, identifying optimal parameters such as pH (5-9), oxidant concentration (500 mM HO), activation rate (63 mM HO h), and an acceptable total organic carbon (TOC) limit (~1000 mg/L TOC) to achieve maximum PFAA precursor conversion. Additional work was performed further optimizing the UV-TOP assay, by confirming its superiority to heat activation, identifying the effectiveness of different persulfate salts, and investigating different concentrations of sodium persulfate and sodium hydroxide at a 1:2.

View Article and Find Full Text PDF

Despite the prevalence of nitrate reduction in groundwater, the biotransformation of per- and polyfluoroalkyl substances (PFAS) under nitrate-reducing conditions remains mostly unknown compared with aerobic or strong reducing conditions. We constructed microcosms under nitrate-reducing conditions to simulate the biotransformation occurring at groundwater sites impacted by aqueous film-forming foams (AFFFs). We investigated the biotransformation of 6:2 fluorotelomer thioether amido sulfonate (6:2 FtTAoS), a principal PFAS constituent of several AFFF formulations using both quantitative liquid chromatography-tandem mass spectrometry (LC-MS/MS) and qualitative high-resolution mass spectrometry analyses.

View Article and Find Full Text PDF

The source tracking of per- and polyfluoroalkyl substances (PFASs) is a new and increasingly necessary subfield within environmental forensics. We define PFAS source tracking as the accurate characterization and differentiation of multiple sources contributing to PFAS contamination in the environment. PFAS source tracking should employ analytical measurements, multivariate analyses, and an understanding of PFAS fate and transport within the framework of a conceptual site model.

View Article and Find Full Text PDF

The fate of per and polyfluoroalkyl substances (PFASs) in aqueous filmforming foams (AFFFs) under anaerobic conditions has not been well characterized, leaving major gaps in our understanding of PFAS fate and transformation at contaminated sites. In this study, the biotransformation of 6:2 fluorotelomer thioether amido sulfonate (6:2 FtTAoS), a component of several AFFF formulations, was investigated under sulfate-reducing conditions in microcosms inoculated with either pristine or AFFF-impacted solids. To identify the transformation products, we used high-resolution mass spectrometry and employed suspect-screening and nontargeted compound identification methods.

View Article and Find Full Text PDF

The fate of per- and polyfluoroalkyl substances (PFASs) derived from aqueous film forming foam (AFFF) was investigated within a wastewater treatment plant (WWTP) receiving large AFFF inputs from a foam refractory testing event. Targeted analysis, the Total Oxidizable Precursor Assay (TOP Assay), and nontargeted analysis with quadrupole time-of-flight (QTOF) were used to characterize the samples. Over the duration of foam testing, approximately 10.

View Article and Find Full Text PDF

In late 2014, wastewater effluent samples were collected from eight treatment plants that discharge to San Francisco (SF) Bay in order to assess poly- and perfluoroalkyl substances (PFASs) currently released from municipal and industrial sources. In addition to direct measurement of twenty specific PFAS analytes, the total concentration of perfluoroalkyl acid (PFAA) precursors was also indirectly measured by adapting a previously developed oxidation assay. Effluent from six municipal treatment plants contained similar amounts of total PFASs, with highest median concentrations of PFHxA (24 ng/L), followed by PFOA (23 ng/L), PFBA (19 ng/L), and PFOS (15 ng/L).

View Article and Find Full Text PDF

The aerobic biotransformation pathways of 4:2, 6:2, and 8:2 fluorotelomer thioether amido sulfonate (FtTAoS) were characterized by determining the fate of the compounds in soil and medium microcosms amended with an aqueous film-forming foam (AFFF) solution. The biotransformation of FtTAoS occurred in live microcosms over approximately 40 days and produced 4:2, 6:2, and 8:2 fluorotelomer sulfonate (FtS), 6:2 fluorotelomer unsaturated carboxylic acid (FtUCA), 5:3 fluorotelomer carboxylic acid (FtCA), and C4 to C8 perfluorinated carboxylic acids (PFCAs). Two biotransformation products corresponding to singly and doubly oxygenated forms of 6:2 FtTAoS were also identified through high resolution mass spectrometry (MS) analysis and liquid chromatography tandem-MS.

View Article and Find Full Text PDF

Poly- and perfluoroalkyl substances (PFASs) are a class of fluorinated chemicals that are utilized in firefighting and have been reported in groundwater and soil at several firefighter training areas. In this study, soil and groundwater samples were collected from across a former firefighter training area to examine the extent to which remedial activities have altered the composition and spatial distribution of PFASs in the subsurface. Log Koc values for perfluoroalkyl acids (PFAAs), estimated from analysis of paired samples of groundwater and aquifer solids, indicated that solid/water partitioning was not entirely consistent with predictions based on laboratory studies.

View Article and Find Full Text PDF

Several classes of polyfluorinated chemicals that are potential precursors to the perfluorinated carboxylates and sulfonates are present in aqueous film-forming foams (AFFF). To assess the persistence of these AFFF-derived precursors, groundwater, soil, and aquifer solids were obtained in 2011 from an unlined firefighter training area at a U.S.

View Article and Find Full Text PDF

A new method was developed to quantify concentrations of difficult-to-measure and unidentified precursors of perfluoroalkyl carboxylic (PFCA) and sulfonic (PFSA) acids in urban runoff. Samples were exposed to hydroxyl radicals generated by thermolysis of persulfate under basic pH conditions and perfluoroalkyl acid (PFAA) precursors were transformed to PFCAs of related perfluorinated chain length. By comparing PFCA concentrations before and after oxidation, the concentrations of total PFAA precursors were inferred.

View Article and Find Full Text PDF

The photolysis of caffeine was studied in solutions of fulvic acid isolated from Suwannee River, GA (SRFA) and Old Woman Creek Natural Estuarine Research Reserve, OH (OWCFA) with different chemical amendments (nitrate and iron). Caffeine degrades slowly by direct photolysis (>170 h in artificial sunlight), but we observed enhanced photodegradation in waters containing the fulvic acids. At higher initial concentrations (10 μM) the indirect photolysis of caffeine occurs predominantly through reaction with the hydroxyl radical (OHⁱ) generated by irradiated fulvic acids.

View Article and Find Full Text PDF