Publications by authors named "Erika Gustafsson"

Background: Normalization Process Theory (NPT) is an implementation theory that can be used to explain how and why implementation strategies work or not in particular circumstances. We used it to understand the mechanisms that lead to the adoption and routinization of palliative care within hemodialysis centers.

Methods: We employed a longitudinal, mixed methods approach to comprehensively evaluate the implementation of palliative care practices among ten hemodialysis centers participating in an Institute for Healthcare Improvement Breakthrough- Series learning collaborative.

View Article and Find Full Text PDF

Immunotherapy with intratumoral injection of adenoviral vectors expressing CD40L has yielded positive results in experimental and clinical bladder cancer. We therefore hypothesized that anti-CD40 antibody would be effective in this setting. Agonistic CD40 antibodies were developed as vaccine adjuvants but have later been used as treatment of advanced solid tumors and hematologic cancers.

View Article and Find Full Text PDF

Perlecan is a heparan sulfate proteoglycan assembled into the vascular basement membranes (BMs) during vasculogenesis. In the present study we have investigated vessel formation in mice, teratomas and embryoid bodies (EBs) in the absence of perlecan. We found that perlecan was dispensable for blood vessel formation and maturation until embryonic day (E) 12.

View Article and Find Full Text PDF

Chemotaxis inhibitory protein of Staphylococcus aureus (CHIPS) is a protein that binds and blocks the C5a receptor (C5aR) and formylated peptide receptor, thereby inhibiting the immune cell recruitment associated with inflammation. If CHIPS was less reactive with existing human antibodies, it would be a promising anti-inflammatory drug candidate. Therefore, we applied directed evolution and computational/rational design to the CHIPS gene in order to generate new CHIPS variants displaying lower interaction with human IgG, yet retaining biological function.

View Article and Find Full Text PDF

Background: The Chemotaxis inhibitory protein of Staphylococcus aureus (CHIPS) blocks the Complement fragment C5a receptor (C5aR) and formylated peptide receptor (FPR) and is thereby a potent inhibitor of neutrophil chemotaxis and activation of inflammatory responses. The majority of the healthy human population has antibodies against CHIPS that have been shown to interfere with its function in vitro. The aim of this study was to define potential epitopes for human antibodies on the CHIPS surface.

View Article and Find Full Text PDF

The Chemotaxis Inhibitory Protein of Staphylococcus aureus (CHIPS) binds and blocks the C5a receptor (C5aR) and formyl-peptide receptor (FPR). This way, CHIPS is a potent inhibitor of the immune cell recruitment associated with inflammation. Truncation of the protein and the introduction of mutations, shifts the expression towards the insoluble fraction of Escherichia coli, whereas the wild-type protein can be solubly expressed.

View Article and Find Full Text PDF

Serum response factor (SRF) is a transcription factor that controls the expression of cytoskeletal proteins and immediate early genes in different cell types. Here, we found that SRF expression is restricted to endothelial cells (ECs) of small vessels such as capillaries in the mouse embryo. EC-specific Srf deletion led to aneurysms and hemorrhages from 11.

View Article and Find Full Text PDF

Aims: Perlecan is a heparansulfate proteoglycan found in basement membranes, cartilage, and several mesenchymal tissues that form during development, tumour growth, and tissue repair. Loss-of-function mutations in the perlecan gene in mice are associated with embryonic lethality caused primarily by cardiac abnormalities probably due to hemopericards. The aim of the present study was to investigate the mechanism underlying the early embryonic lethality and the pathophysiological relevance of perlecan for heart function.

View Article and Find Full Text PDF

Mutations in the TRPS1 gene lead to the tricho-rhino-phalangeal syndrome, which is characterized by skeletal defects and abnormal hair development. The TRPS1 gene encodes an atypical member of the GATA-type family of transcription factors. Here we show that mice with a disrupted Trps1 gene develop a chondrodysplasia characterized by diminished chondrocyte proliferation and decreased apoptosis in growth plates.

View Article and Find Full Text PDF

Cardiac fibrosis, associated with a decreased extent of microvasculature and with disruption of normal myocardial structures, results from excessive deposition of extracellular matrix, which is mediated by the recruitment of fibroblasts. The source of these fibroblasts is unclear and specific anti-fibrotic therapies are not currently available. Here we show that cardiac fibrosis is associated with the emergence of fibroblasts originating from endothelial cells, suggesting an endothelial-mesenchymal transition (EndMT) similar to events that occur during formation of the atrioventricular cushion in the embryonic heart.

View Article and Find Full Text PDF

Inactivation of the perlecan gene leads to perinatal lethal chondrodysplasia. The similarity to the phenotypes of the Col2A1 knock-out and the disproportionate micromelia mutation suggests perlecan involvement in cartilage collagen matrix assembly. We now present a mechanism for the defect in collagen type II fibril assembly by perlecan-null chondrocytes.

View Article and Find Full Text PDF

Mutational defects in fibrillin-rich microfibrils give rise to a number of heritable connective tissue disorders, generally termed microfibrillopathies. To understand the pathogenesis of these microfibrillopathies, it is important to elucidate the supramolecular composition of microfibrils and their interaction properties with extracellular matrix components. Here we demonstrate that the proteoglycan perlecan is an associated component of microfibrils typically close to basement membrane zones.

View Article and Find Full Text PDF

Knockout of caspase-8, a cysteine protease that participates in the signaling for cell death by receptors of the TNF/nerve growth factor family, is lethal to mice in utero. To explore tissue-specific roles of this enzyme, we established its conditional knockout using the Cre/loxP recombination system. Consistent with its role in cell death induction, deletion of caspase-8 in hepatocytes protected them from Fas-induced caspase activation and death.

View Article and Find Full Text PDF

In skin, hemidesmosomal protein complexes attach the epidermis to the dermis and are critical for stable connection of the basal epithelial cell cytoskeleton with the basement membrane (BM). In muscle, a similar supramolecular aggregate, the dystrophin glycoprotein complex links the inside of muscle cells with the BM. A component of the muscle complex, dystroglycan (DG), also occurs in epithelia.

View Article and Find Full Text PDF

Platelet-derived growth factor-B (PDGFB) is necessary for normal cardiovascular development, but the relative importance of different cellular sources of PDGFB has not been established. Using Cre-lox techniques, we show here that genetic ablation of Pdgfb in endothelial cells leads to impaired recruitment of pericytes to blood vessels. The endothelium-restricted Pdgfb knockout mutants also developed organ defects including cardiac, placental and renal abnormalities.

View Article and Find Full Text PDF

The cartilage extracellular matrix is composed of a dense collagen network that entraps a range of other specialized proteins important for the proper formation and function of the tissue. Loss of two abundant cartilage components, type II collagen and perlecan, has drastic effects on skeletal development. Both collagen II and perlecan mutants have severe and lethal chondrodysplasia characterized by disorganized growth plate, lack of collagen network, defective endochondral bone formation, and abnormal intervertebral disk development.

View Article and Find Full Text PDF

Zyxin is an evolutionarily conserved protein that is concentrated at sites of cell adhesion, where it associates with members of the Enabled (Ena)/vasodilator-stimulated phosphoprotein (VASP) family of cytoskeletal regulators and is postulated to play a role in cytoskeletal dynamics and signaling. Zyxin transcripts are detected throughout murine embryonic development, and the protein is widely expressed in adults. Here we used a reverse genetic approach to examine the consequences of loss of zyxin function in the mouse.

View Article and Find Full Text PDF

Loss of pericytes from the capillary wall is a hallmark of diabetic retinopathy, however, the pathogenic significance of this phenomenon is unclear. In previous mouse gene knockout models leading to pericyte deficiency, prenatal lethality has so far precluded analysis of postnatal consequences in the retina. We now report that endothelium-restricted ablation of platelet-derived growth factor-B generates viable mice with extensive inter- and intra-individual variation in the density of pericytes throughout the CNS.

View Article and Find Full Text PDF

Perlecan is a heparan-sulfate proteoglycan abundantly expressed in pericellular matrices and basement membranes during development. Inactivation of the perlecan gene in mice is lethal at two developmental stages: around E10 and around birth. We report a high incidence of malformations of the cardiac outflow tract in perlecan-deficient embryos.

View Article and Find Full Text PDF