The aim of this study was to assess the potential use of a selective small molecule MALT1 inhibitor in solid tumor treatment as an immunotherapy targeting regulatory T-cells (Tregs). In vitro, MALT1 inhibition suppressed the proteolytic cleavage of the MALT1-substrate HOIL1 and blocked IL-2 secretion in Jurkat cells. It selectively suppressed the proliferation of PBMC-derived Tregs, with no effect on conventional CD4T-cells.
View Article and Find Full Text PDFIn most vertebrate animals, glucocorticoid hormones are the chief mediators of homeostasis in response to ecological conditions and as they progress through their lifecycle. In addition, glucocorticoids are a major part of the stress response and stress induced elevations of the hormone can make it difficult to assess glucocorticoid secretion in response to changes in life-stage and current environmental conditions in wild animals. Particularly when quantifying circulating levels of glucocorticoids in the blood which fluctuate rapidly in response to stress.
View Article and Find Full Text PDFEnhancing T cell responses against both viral and tumor Ags requires efficient costimulation and directed delivery of peptide Ags into APCs. Long peptide vaccines are considered favorable vaccine moieties from a clinical perspective, as they can harbor more than one immunogenic epitope enabling treatment of a broader target population. In addition, longer peptides are not extracellularly loaded on MHC class I; rather, they require intracellular processing and will thereby be presented to T cells mainly by professional APCs, thereby avoiding the risk of tolerance induction.
View Article and Find Full Text PDFImmune complexes are potent mediators of cellular immunity and have been extensively studied for their disease mediating properties in humans and for their role in anti-cancer immunity. However, a viable approach to use antibody-complexed antigen as vehicle for specific immunotherapy has not yet reached clinical use. Since virtually all people have endogenous antibodies against tetanus toxoid (TTd), such commonly occurring antibodies are promising candidates to utilize for immune modulation.
View Article and Find Full Text PDFFirst infusion reactions along with severe anaphylactic responses can occur as a result of systemic administration of therapeutic antibodies. The underlying mechanisms by which monoclonal antibodies induce cytokine release syndrome (CRS) can involve direct agonistic effects via the drug target, or a combination of target-engagement along with innate receptor interactions. Despite the wide variety of pathways and cells that can play a role in CRS, many currently used assays are devoid of one or more components that must be present for these responses to occur.
View Article and Find Full Text PDFPurpose: Local administration of immune-activating antibodies may increase the efficacy and reduce the immune-related adverse events associated with systemic immunotherapy of cancer. Here, we report the development and affinity maturation of a fully human agonistic CD40 antibody (IgG1), ADC-1013.
Experimental Design: We have used molecular engineering to generate an agonistic antibody with high affinity for CD40.