Publications by authors named "Erika E Nishi"

An upregulation of angiotensin-converting enzyme (ACE) expression strengthens the immune activity of myeloid lineage cells as a natural functional regulation mechanism in our immunity. ACE10/10 mice, possessing increased ACE expression in macrophages, exhibit enhanced anti-tumor immunity and anti-bactericidal effects compared to those of wild type (WT) mice, while the detailed molecular mechanism has not been elucidated yet. In this report, we demonstrate that peroxisome proliferator-activated receptor alpha (PPARα) is a key molecule in the functional upregulation of macrophages induced by ACE.

View Article and Find Full Text PDF

The impact of obesity upon bone metabolism is controversial since both beneficial or harmful effects have been reported. Bone remodeling is modulated by the central nervous system through cytokines, hormones and neuromodulators. The present study aimed to evaluate the effects evoked by bilateral retroperitoneal white adipose tissue (rWAT) denervation (Dnx) upon bone mineral metabolism and remodeling in an experimental model of obesity in rats.

View Article and Find Full Text PDF

We examined the effects of an acute increase in blood pressure (BP) and renal sympathetic nerve activity (rSNA) induced by bicuculline (Bic) injection in the paraventricular nucleus of hypothalamus (PVN) or the effects of a selective increase in rSNA induced by renal nerve stimulation (RNS) on the renal excretion of sodium and water and its effect on sodium-hydrogen exchanger 3 (NHE3) activity. Uninephrectomized anesthetized male Wistar rats were divided into three groups: (1) Sham; (2) Bic PVN: (3) RNS + Bic injection into the PVN. BP and rSNA were recorded, and urine was collected prior and after the interventions in all groups.

View Article and Find Full Text PDF

Unlabelled: Fructose overload is associated with cardiovascular and metabolic disorders. During pregnancy, these alterations may affect the maternal environment and predispose offspring to diseases.

Aims: To evaluate the renal morphology and function of offspring of dams that received fructose overload during pregnancy and lactation.

View Article and Find Full Text PDF

Spinal cord neurons contribute to elevated sympathetic vasomotor activity in renovascular hypertension (2K1C), particularly, increased actions of angiotensin II. However, the origin of these spinal angiotensinergic inputs remains unclear. The present study aimed to investigate the role of spinal angiotensin II type 1 receptor (AT1) receptors in the sympathoexcitatory responses evoked by the activation of the rostral ventrolateral medulla (RVLM) in control and 2K1C Goldblatt rats.

View Article and Find Full Text PDF

Sympathetic vasomotor overactivity is a major feature leading to the cardiovascular dysfunction related to obesity. Considering that the retroperitoneal white adipose tissue (rWAT) is an important fat visceral depot and receives intense sympathetic and afferent innervations, the present study aimed to evaluate the effects evoked by bilateral rWAT denervation in obese rats. Male Wistar rats were fed with HFD for 8 consecutive weeks and rWAT denervation was performed at the 6th week.

View Article and Find Full Text PDF

Renal sensory activity is centrally integrated within brain nuclei involved in the control of cardiovascular function, suggesting that renal afferents regulate basal and reflex sympathetic vasomotor activity. Evidence has shown that renal deafferentation (DAx) evokes a hypotensive and sympathoinhibitory effect in experimental models of cardiovascular diseases; however, the underlying mechanisms involved in this phenomenon need to be clarified, especially those related to central aspects. We aimed to investigate the role of renal afferents in the control of γ-aminobutyric acid (GABA)ergic inputs to the paraventricular nucleus (PVN) of the hypothalamus in renovascular hypertensive (2K1C) rats and their influence in the regulation of cardiovascular function.

View Article and Find Full Text PDF

Elevated sympathetic vasomotor activity is a common feature of cardiorenal diseases. Therefore, the sympathetic nervous system is an important therapeutic target, particularly the fibers innervating the kidneys. In fact, renal denervation has been applied clinically and shown promising results in patients with hypertension and chronic kidney disease.

View Article and Find Full Text PDF

The control of sympathetic vasomotor activity involves a complex network within the brain and spinal circuits. An extensive range of studies has indicated that sympathoexcitation is a common feature in several cardiovascular diseases and that strategies to reduce sympathetic vasomotor overactivity in such conditions can be beneficial. In the present mini-review, we present evidence supporting the spinal cord as a potential therapeutic target to mitigate sympathetic vasomotor overactivity in cardiovascular diseases, focusing mainly on the actions of spinal angiotensin II on the control of sympathetic preganglionic neuronal activity.

View Article and Find Full Text PDF

Previous studies have been described changes in brain regions contributing to the sympathetic vasomotor overactivity in Goldblatt hypertension (2K1C). Furthermore, changes in the spinal cord are also involved in the cardiovascular and autonomic dysfunction in renovascular hypertension, as intrathecal (i.t.

View Article and Find Full Text PDF

Background: Knowledge of the central areas involved in the control of sympathetic vasomotor activity has advanced in the last few decades. γ-Aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the mammal nervous system, and a microinjection of bicuculline, an antagonist of GABA type A (GABA-A) receptors, into the paraventricular nucleus of the hypothalamus (PVN) alters the pattern of sympathetic activity to the renal, splanchnic and lumbar territories. However, studies are needed to clarify the role of GABAergic inputs in other central areas involved in the sympathetic vasomotor activity.

View Article and Find Full Text PDF

The ablation of renal nerves, by destroying both the sympathetic and afferent fibers, has been shown to be effective in lowering blood pressure in resistant hypertensive patients. However, experimental studies have reported that the removal of sympathetic fibers may lead to side effects, such as the impairment of compensatory cardiorenal responses during a hemodynamic challenge. In the present study, we evaluated the effects of the selective removal of renal afferent fibers on arterial hypertension, renal sympathetic nerve activity, and renal changes in a model of renovascular hypertension.

View Article and Find Full Text PDF

Background: Clinical and experimental evidence have shown that renal denervation, by removing both the sympathetic and afferent nerves, improves arterial hypertension and renal function in chronic kidney disease (CKD). Given the key role of renal sympathetic innervation in maintaining sodium and water homeostasis, studies have indicated that the total removal of renal nerves leads to impaired compensatory mechanisms during hemodynamic challenges.

Method: In the present study, we hypothesized that afferent (or sensory) fibers from the diseased kidney contribute to sympathetic overactivation to the kidney and other target organ, such as the splanchnic region, contributing to hypertension in CKD.

View Article and Find Full Text PDF

The role of the renin-angiotensin-aldosterone system and arginine vasopressin (AVP) as humoral components in maintaining blood pressure (BP) during hemorrhagic shock (HS) is well established. However, little is known about the role of angiotensin II (Ang II) and AVP in the control of preganglionic sympathetic neuron activity. We studied the effects evoked by spinal Ang II type I (AT) and V1a receptors antagonism on cardiovascular and sympathetic responses during HS.

View Article and Find Full Text PDF

We aimed to investigate the effects of nitric oxide (NO) synthesis inhibition by NO synthase inhibitor N-nitro-L-arginine-methyl ester (L-NAME) treatment on the sympathetic vasomotor nerve activity (SNA) on two sympathetic vasomotor nerves, the renal and splanchnic. NO plasma level and systemic oxidative stress were assessed. Hypertension was induced by L-NAME (20 mg/kg per day, by gavage, for seven consecutive days) in male Wistar rats.

View Article and Find Full Text PDF

Sympathetic overactivation contributes to the pathogenesis of both experimental and human hypertension. We have previously reported that oxidative stress in sympathetic premotor neurons leads to arterial baroreflex dysfunction and increased sympathetic drive to the kidneys in an experimental model of neurogenic hypertension. In this study, we hypothesized that melatonin, a potent antioxidant, may be protective in the brainstem regions involved in the tonic and reflex control of blood pressure (BP) in renovascular hypertensive rats.

View Article and Find Full Text PDF

Pre-eclampsia (PE) affects approximately 2 to 8% of pregnant women, causing blood pressure above 140 × 90 mmHg and proteinuria, normally after the 20th gestation week. If unsuccessfully treated, PE can lead to self-limited seizures (Eclampsia) that could eventually result in death of the mother and her fetus. The present study reports an experimental model of preeclampsia hypertension in pregnant (HP) and non-pregnant (H) Wistar rats by partially clamping one of their renal arteries.

View Article and Find Full Text PDF

The underlying mechanisms by which renal denervation (RD) decreases blood pressure (BP) remain incompletely understood. In this study, we investigated the effects of ischemic kidney denervation on different sympathetic outflows, brain and renal expression of angiotensin-II receptors, oxidative stress and renal function markers in the 2-kidney, 1-clip (2K-1C) rat model. Surgical RD was performed in Wistar male rats 4-5 weeks after clip implantation.

View Article and Find Full Text PDF

Aging immune deterioration and Epstein-Barr (EBV) intrinsic mechanisms play an essential role in EBV-positive diffuse large B-cell lymphoma (DLBCL) of the elderly (EBV + DLBCLe) pathogenesis, through the expression of viral proteins, interaction with host molecules and epigenetic regulation, such as miR-155, required for induction of M1 phenotype of macrophages. This study aims to evaluate the relationship between macrophage polarization pattern in the tumor microenvironment and relative expression of miR-155 in EBV + DLBCLe and EBV-negative DLBCL patients. We studied 28 EBV + DLBCLe and 65 EBV-negative DLBCL patients.

View Article and Find Full Text PDF

The role of spinal cord neurons in renal sympathoexcitation remains unclear in renovascular hypertension, represented by the 2-kidney, 1-clip (2K1C) model. Thus, we aimed to assess the influence of spinal glutamatergic and AT1 angiotensin II receptors on renal sympathetic nerve activity (rSNA) in 2K1C Wistar rats. Hypertension was induced by clipping the renal artery with a silver clip.

View Article and Find Full Text PDF

Sympathetic vasomotor activity is significantly increased in renovascular hypertension. Renal denervation (DnX) has emerged as a novel therapy for resistant hypertension to drug therapy. However, the underlying mechanisms regarding the reduction in blood pressure (BP) after DnX remain unclear.

View Article and Find Full Text PDF

Presympathetic neurons in the rostral ventrolateral medulla (RVLM) including the adrenergic cell groups play a major role in the modulation of several reflexes required for the control of sympathetic vasomotor tone and blood pressure (BP). Moreover, sympathetic vasomotor drive to the kidneys influence natriuresis and diuresis by inhibiting the cAMP/PKA pathway and redistributing the Na/H exchanger isoform 3 (NHE3) to the body of the microvilli in the proximal tubules. In this study we aimed to evaluate the effects of renal afferents stimulation on (1) the neurochemical phenotype of Fos expressing neurons in the medulla oblongata and (2) the level of abundance and phosphorylation of NHE3 in the renal cortex.

View Article and Find Full Text PDF

Background: Oxidative stress is a key mediator in the maintenance of sympathoexcitation and hypertension in human and experimental models. Green tea is widely known to be potent antioxidant.

Objective: We aimed to evaluate the effects of green tea in a model of hypertension.

View Article and Find Full Text PDF

It is known that increased sympathetic nerve activity in chronic kidney disease (CKD) progressively worsens kidney function and hypertension. We tested the hypothesis that total renal denervation contributes to reduce sympathetic activation to different beds and improves renal function in 5/6 nephrectomy model of CKD in male Wistar rats. After eight weeks of 5/6 nephrectomy surgery there was an increase in mean arterial pressure (CKD 179±22mmHg, n=6 vs.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session94sdtes2s382tnbs4a3hgkv6b0sq2m85): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once