Publications by authors named "Erika Delgado-Fukushima"

Labeled protein-based biomaterials have become a popular for various biomedical applications such as tissue-engineered, therapeutic, or diagnostic scaffolds. Labeling of protein biomaterials, including with ultrasmall super-paramagnetic iron oxide (USPIO) nanoparticles, has enabled a wide variety of imaging techniques. These USPIO-based biomaterials are widely studied in magnetic resonance imaging (MRI), thermotherapy, and magnetically-driven drug delivery which provide a method for direct and non-invasive monitoring of implants or drug delivery agents.

View Article and Find Full Text PDF

A protein-engineered triblock copolymer hydrogel composed of two self-assembling domains (SADs) has been fabricated by a photoactivatable diazirine group followed by ultraviolet (UV)-mediated crosslinking. The photocrosslinkable protein polymer CEC-D has been patterned into various features including different micrometer-scale stripes by using lithographic techniques. The patterned hydrogels are important for encapsulation of small molecules where a photopatterned fraction of 50% is optimal for maximum absorption.

View Article and Find Full Text PDF

Thermoresponsive hydrogels are used for an array of biomedical applications. Lower critical solution temperature-type hydrogels have been observed in nature and extensively studied in comparison to upper critical solution temperature (UCST)-type hydrogels. Of the limited protein-based UCST-type hydrogels reported, none have been composed of a single coiled-coil domain.

View Article and Find Full Text PDF

Engineered proteins provide an interesting template for designing fluorine-19 (F) magnetic resonance imaging (MRI) contrast agents, yet progress has been hindered by the unpredictable relaxation properties of fluorine. Herein, we present the biosynthesis of a protein block copolymer, termed "fluorinated thermoresponsive assembled protein" (F-TRAP), which assembles into a monodisperse nanoscale micelle with interesting F NMR properties and the ability to encapsulate and release small therapeutic molecules, imparting potential as a diagnostic and therapeutic (theranostic) agent. The assembly of the F-TRAP micelle, composed of a coiled-coil pentamer corona and a hydrophobic, thermoresponsive elastin-like polypeptide core, results in a drastic depression in spin-spin relaxation ( T) times and unaffected spin-lattice relaxation ( T) times.

View Article and Find Full Text PDF