Publications by authors named "Erika C Urdaneta"

RNA-binding proteins play key roles in controlling gene expression in many organisms, but relatively few have been identified and characterised in detail in Gram-positive bacteria. Here, we globally analyse RNA-binding proteins in methicillin-resistant Staphylococcus aureus (MRSA) using two complementary biochemical approaches. We identify hundreds of putative RNA-binding proteins, many containing unconventional RNA-binding domains such as Rossmann-fold domains.

View Article and Find Full Text PDF

Protein-RNA interactions regulate all aspects of RNA metabolism and are crucial to the function of catalytic ribonucleoproteins. Until recently, the available technologies to capture RNA-bound proteins have been biased toward poly(A) RNA-binding proteins (RBPs) or involve molecular labeling, limiting their application. With the advent of organic-aqueous phase separation-based methods, we now have technologies that efficiently enrich the complete suite of RBPs and enable quantification of RBP dynamics.

View Article and Find Full Text PDF

Post-transcriptional regulation of gene expression in cells is facilitated by formation of RNA-protein complexes (RNPs). While many methods to study eukaryotic (m)RNPs rely on purification of polyadenylated RNA, other important regulatory RNA classes or bacterial mRNA could not be investigated at the same depth. To overcome this limitation, we developed Phenol Toluol extraction (PTex), a novel and unbiased method for the purification of UV cross-linked RNPs in living cells.

View Article and Find Full Text PDF

In recent years, hundreds of novel RNA-binding proteins (RBPs) have been identified, leading to the discovery of novel RNA-binding domains. Furthermore, unstructured or disordered low-complexity regions of RBPs have been identified to play an important role in interactions with nucleic acids. However, these advances in understanding RBPs are limited mainly to eukaryotic species and we only have limited tools to faithfully predict RNA-binders in bacteria.

View Article and Find Full Text PDF

Recent methodological advances allowed the identification of an increasing number of RNA-binding proteins (RBPs) and their RNA-binding sites. Most of those methods rely, however, on capturing proteins associated to polyadenylated RNAs which neglects RBPs bound to non-adenylate RNA classes (tRNA, rRNA, pre-mRNA) as well as the vast majority of species that lack poly-A tails in their mRNAs (including all archea and bacteria). We have developed the Phenol Toluol extraction (PTex) protocol that does not rely on a specific RNA sequence or motif for isolation of cross-linked ribonucleoproteins (RNPs), but rather purifies them based entirely on their physicochemical properties.

View Article and Find Full Text PDF