Publications by authors named "Erika A Linder"

Objective: Prior studies demonstrate mitochondrial dysfunction with increased reactive oxygen species generation in peripheral blood mononuclear cells in diabetes mellitus. Oxidative stress-mediated damage to mitochondrial DNA promotes atherosclerosis in animal models. Thus, we evaluated the relation of mitochondrial DNA damage in peripheral blood mononuclear cells s with vascular function in patients with diabetes mellitus and with atherosclerotic cardiovascular disease.

View Article and Find Full Text PDF

Background: Endothelial dysfunction contributes to cardiovascular disease in diabetes mellitus. Autophagy is a multistep mechanism for the removal of damaged proteins and organelles from the cell. Under diabetic conditions, inadequate autophagy promotes cellular dysfunction and insulin resistance in non-vascular tissue.

View Article and Find Full Text PDF

Objective: Endothelial dysfunction is linked to insulin resistance, inflammatory activation, and increased cardiovascular risk in diabetes mellitus; however, the mechanisms remain incompletely understood. Recent studies have identified proinflammatory signaling of wingless-type family member (Wnt) 5a through c-jun N-terminal kinase (JNK) as a regulator of metabolic dysfunction with potential relevance to vascular function. We sought to gain evidence that increased activation of Wnt5a-JNK signaling contributes to impaired endothelial function in patients with diabetes mellitus.

View Article and Find Full Text PDF

Background: Endoplasmic reticulum (ER) stress and the subsequent unfolded protein response may initially be protective, but when prolonged, have been implicated in atherogenesis in diabetic conditions. Triglycerides and free fatty acids (FFAs) are elevated in patients with diabetes and may contribute to ER stress. We sought to evaluate the effect of acute FFA elevation on ER stress in endothelial and circulating white cells.

View Article and Find Full Text PDF

Normal pregnancy is associated with an increase in uteroplacental blood flow in part due to growth and remodeling of the maternal uterine vasculature. In this study, we characterized the effect of diabetic pregnancy on vascular growth of the maternal uterine vasculature and on the passive mechanical properties of the uterine resistance arteries. Diabetes was induced in pregnant rats by injection of streptozotocin and confirmed by development of hyperglycemia.

View Article and Find Full Text PDF