Understanding the behavior of combinatorially developed luminescent materials requires detailed characterization methods that have been lacking thus far. We developed a device for directly surveying the luminescent properties of thin-film libraries created through combinatorial gradient sputter deposition. Step-scan recorded excitation-, emission- and luminescence decay spectra of a thin-film library were resolved and combined with EDX measurements on the same film, relating composition to luminescent properties.
View Article and Find Full Text PDFAnalytical equations quantifying self-absorption losses in circular luminescent solar concentrators (LSCs) are presented that can easily be solved numerically by commercial math software packages. With the quantum efficiency, the absorption and emission spectra of a luminescent material, the LSC dimensions, and the refractive index as the only input parameters, the model gives an accurate account of the decrease of LSC efficiency due to self-absorption as a function of LSC radius, thickness, and luminescence quantum efficiency. Results give insight into how many times light is reabsorbed and reemitted, the red shift of the emission spectrum, and on how multiple reabsorptions and reemissions are distributed over the LSC.
View Article and Find Full Text PDFDetection of x-rays and gamma rays with high spatial resolution can be achieved with scintillators that are optically coupled to electron-multiplying charge-coupled devices (EMCCDs). These can be operated at typical frame rates of 50 Hz with low noise. In such a set-up, scintillation light within each frame is integrated after which the frame is analyzed for the presence of scintillation events.
View Article and Find Full Text PDFThe spectral properties of LaVO(4), GdVO(4) and LuVO(4) crystals doped with Ce(3+), Pr(3+), Eu(3+) or Tb(3+) have been investigated in order to determine the position of the energy levels relative to the valence and conduction bands of the hosts along the trivalent and divalent lanthanide series. Pr(3+) and Tb(3+) ground state levels are positioned based on the electron transfer energy from those states to the conduction band, the so-called intervalence charge transfer (IVCT). This approach is compared with an alternative model that is based on electron transfer from the valence band to a lanthanide.
View Article and Find Full Text PDF