Publications by authors named "Erik Wentzel"

Activating mutations in codon D816 of the tyrosine kinase receptor, KIT, are found in the majority of patients with systemic mastocytosis. We found that the transcription factor, microphthalmia-associated transcription factor (MITF), is highly expressed in bone marrow biopsies from 9 of 10 patients with systemic mastocytosis and activating c-KIT mutations. In primary and transformed mast cells, we show that KIT signaling markedly up-regulates MITF protein.

View Article and Find Full Text PDF

Although activating mutations in RAS oncogenes are known to result in aberrant signaling through multiple pathways, the role of microRNAs (miRNAs) in the Ras oncogenic program remains poorly characterized. Here we demonstrate that Ras activation leads to repression of the miR-143/145 cluster in cells of human, murine, and zebrafish origin. Loss of miR-143/145 expression is observed frequently in KRAS mutant pancreatic cancers, and restoration of these miRNAs abrogates tumorigenesis.

View Article and Find Full Text PDF

Androgen receptor (AR)-mediated oncogenic pathways have not been fully elucidated. In this study, we used high-throughput microarray analysis on two AR-positive prostate cancer (CaP) cell lines to identify 16 AR-responsive microRNAs (miRNA). We focused on miR-21 because of its previously reported oncogenic activity in other cancers.

View Article and Find Full Text PDF

Therapeutic strategies based on modulation of microRNA (miRNA) activity hold great promise due to the ability of these small RNAs to potently influence cellular behavior. In this study, we investigated the efficacy of a miRNA replacement therapy for liver cancer. We demonstrate that hepatocellular carcinoma (HCC) cells exhibit reduced expression of miR-26a, a miRNA that is normally expressed at high levels in diverse tissues.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are 18- to 24-nt RNA molecules that regulate messenger RNAs (mRNAs). Posttranscriptional mechanisms regulate miRNA abundance during development as well as in cancer cells where miRNAs frequently exhibit dysregulated expression. The molecular mechanisms that govern the global efficiency of miRNA biogenesis in these settings remain incompletely understood, and experimental systems for the biochemical dissection of these pathways are currently lacking.

View Article and Find Full Text PDF

Direct control of microRNA (miRNA) expression by oncogenic and tumor suppressor networks results in frequent dysregulation of miRNAs in cancer cells and contributes to tumorigenesis. We previously demonstrated that activation of the c-Myc oncogenic transcription factor (Myc) broadly influences miRNA expression and in particular leads to widespread miRNA down-regulation. miRNA transcripts repressed by Myc include several with potent tumor suppressor activity such as miR-15a/16-1, miR-34a, and let-7 family members.

View Article and Find Full Text PDF

The dleu2 tumor suppressor locus encodes two microRNAs, miR-15a and miR-16, which are thought to play an important role in B-cell neoplasms. However, relatively little is known about proteins that regulate or are regulated by this microRNA cluster. Here we demonstrate that the Pax5 oncoprotein downregulates the dleu2 gene and at the same time boosts expression of its own heterodimeric partner c-Myb.

View Article and Find Full Text PDF

The c-Myc oncogenic transcription factor (Myc) is pathologically activated in many human malignancies. Myc is known to directly upregulate a pro-tumorigenic group of microRNAs (miRNAs) known as the miR-17-92 cluster. Through the analysis of human and mouse models of B cell lymphoma, we show here that Myc regulates a much broader set of miRNAs than previously anticipated.

View Article and Find Full Text PDF

The p53 tumor suppressor protein is a critical regulator of the cellular response to cancer-initiating insults such as genotoxic stress. In this report, we demonstrate that microRNAs (miRNAs) are important components of the p53 transcriptional network. Global miRNA expression analyses identified a cohort of miRNAs that exhibit p53-dependent upregulation following DNA damage.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) negatively regulate partially complementary target messenger RNAs. Target selection in animals is dictated primarily by sequences at the miRNA 5' end. We demonstrated that despite their small size, specific miRNAs contain additional sequence elements that control their posttranscriptional behavior, including their subcellular localization.

View Article and Find Full Text PDF

Human adenocarcinomas commonly harbor mutations in the KRAS and MYC proto-oncogenes and the TP53 tumor suppressor gene. All three genetic lesions are potentially pro-angiogenic, as they sustain production of vascular endothelial growth factor (VEGF). Yet Kras-transformed mouse colonocytes lacking p53 formed indolent, poorly vascularized tumors, whereas additional transduction with a Myc-encoding retrovirus promoted vigorous vascularization and growth.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are 21-23 nucleotide RNA molecules that regulate the stability or translational efficiency of target messenger RNAs. miRNAs have diverse functions, including the regulation of cellular differentiation, proliferation and apoptosis. Although strict tissue- and developmental-stage-specific expression is critical for appropriate miRNA function, mammalian transcription factors that regulate miRNAs have not yet been identified.

View Article and Find Full Text PDF