The Structural Genomics Consortium is an international open science research organization with a focus on accelerating early-stage drug discovery, namely hit discovery and optimization. We, as many others, believe that artificial intelligence (AI) is poised to be a main accelerator in the field. The question is then how to best benefit from recent advances in AI and how to generate, format and disseminate data to enable future breakthroughs in AI-guided drug discovery.
View Article and Find Full Text PDFHigh quality biological reagents are a prerequisite for pharmacological research. Herein a protein production screening approach, including quality assessment methods, for protein-based discovery research is presented. Trends from 2895 expression constructs representing 253 proteins screened in mammalian and bacterial hosts-91% of which are successfully expressed and purified-are discussed.
View Article and Find Full Text PDFN-terminal extensions ("tags") have proven valuable for producing peptides using high throughput recombinant expression technologies. However, the applicability is hampered by the limited options for specific and efficient proteases to release the fully native sequence without additional amino acids in the N-terminal. Here we describe the Escherichia coli (E.
View Article and Find Full Text PDFObjective: To characterize the EndoC-βH1 cell line as a model for human beta cells and evaluate its beta cell functionality, focusing on insulin secretion, proliferation, apoptosis and ER stress, with the objective to assess its potential as a screening platform for identification of novel anti-diabetic drug candidates.
Methods: EndoC-βH1 was transplanted into mice for validation of in vivo functionality. Insulin secretion was evaluated in cells cultured as monolayer and as pseudoislets, as well as in diabetic mice.
PEGylation is the most widely used method to chemically modify protein biopharmaceuticals, but surprisingly limited public data is available on the biophysical effects of protein PEGylation. Here we report the first large-scale study, with site-specific mono-PEGylation of 15 different proteins and characterization of 61 entities in total using a common set of analytical methods. Predictions of molecular size were typically accurate in comparison with actual size determined by size-exclusion chromatography (SEC) or dynamic light scattering (DLS).
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
July 2015
Members of the IL-6 family, IL-6 and ciliary neurotrophic factor (CNTF), have been shown to increase glucose uptake and fatty acid oxidation in skeletal muscle. However, the metabolic effects of another family member, leukemia inhibitory factor (LIF), are not well characterized. Effects of LIF on skeletal muscle glucose uptake and palmitate oxidation and signaling were investigated in ex vivo incubated mouse soleus and EDL muscles from muscle-specific AMPKα2 kinase-dead, muscle-specific SOCS3 knockout, and lean and high-fat-fed mice.
View Article and Find Full Text PDFThe stimulation of fibroblast growth factor receptors (FGFRs) with distinct FGF ligands generates specific cellular responses. However, the mechanisms underlying this paradigm have remained elusive. Here, we show that FGF-7 stimulation leads to FGFR2b degradation and, ultimately, cell proliferation, whereas FGF-10 promotes receptor recycling and cell migration.
View Article and Find Full Text PDFLigation-independent cloning (LIC) allows for cloning of DNA constructs independent of insert restriction sites and ligases. However, any required mutations are typically introduced by additional, time-consuming steps. We present a rapid, inexpensive method for mutagenesis in the 5' LIC site of expression constructs and report on the construction of expression vectors with N-terminal serine, cysteine, threonine, or tyrosine residues after tobacco etch virus (TEV) protease cleavage.
View Article and Find Full Text PDFEscherichia coli represents a robust, inexpensive expression host for the production of recombinant proteins. However, one major limitation is that certain protein classes do not express well in a biologically relevant form using standard expression approaches in the cytoplasm of E. coli.
View Article and Find Full Text PDFSoluble expression of proteins in a relevant form for functional and structural investigations still often remains a challenge. Although many biochemical factors are known to affect solubility, a thorough investigation of yield-limiting factors is normally not feasible in high-throughput efforts. Here we present a screening strategy for expression of biomedically relevant proteins in Escherichia coli using a panel of six different genetic variations.
View Article and Find Full Text PDFDevelopment of molecules with the ability to selectively inhibit particular protein-protein interactions is important in providing tools for understanding cell biology. In this work, we describe efforts to select small Ras- and Raf-specific three-helix bundle affibody binding proteins capable of inhibiting the interaction between H-Ras and Raf-1, from a combinatorial library displayed on bacteriophage. Target-specific variants with typically high nanomolar or low micromolar affinities (K(D)) could be selected successfully against both proteins, as shown by dot blot, ELISA and real-time biospecific interaction analyses.
View Article and Find Full Text PDFAffibody molecules binding to the site of hormone interaction in IGF-1R (insulin-like growth factor-1 receptor) were successfully selected by phage-display technology employing a competitive-elution strategy during biopanning, whereby release of receptor-bound phagemids was accomplished by competition with IGF-1 (insulin-like growth factor-1). In non-competitive selections, the elution of receptor-bound phagemids was performed by imidazole or low-pH incubation, which also resulted in the isolation of affibody molecules that could bind to the receptor. An ELISA-based assay showed that the affibody molecules generated by IGF-1 competition during elution, in addition to affibody molecules generated in the non-competitive selections, could compete with IGF-1 for binding to the receptor.
View Article and Find Full Text PDFAbnormal activity of the epidermal growth factor receptor (EGFR) is associated with various cancer-related processes and motivates the search for strategies that can selectively block EGFR signalling. In this study, functional knockdown of EGFR was achieved through expression of an affibody construct, (ZEGFR:1907)(2-)KDEL, with high affinity for EGFR and extended with the amino acids KDEL to make it resident in the secretory compartments. Expression of (ZEGFR:1907)(2-)KDEL resulted in 80% reduction ofthe cell surface level of EGFR, and fluorescent staining for EGFR and the (ZEGFR:1907)(2-)KDEL construct showed overlapping intracellular localisation.
View Article and Find Full Text PDFInterference with the export of cell surface receptors can be performed through co-expression of specific affinity molecules designed for entrapment in the endoplasmic reticulum during the export process. We describe the investigation of a small (6 kDa) non-immunoglobulin-based HER2 receptor binding affibody molecule (Z(HER2:00477)), for use in affinity mediated entrapment of the HER2 receptor in the ER. Constructs encoding Z(HER2:00477) or a control affibody protein, with or without ER-retention peptide extensions (KDEL), were expressed in the HER2 over-expressing cell line SKOV-3.
View Article and Find Full Text PDF