Publications by authors named "Erik Thiede"

Allostery is the mechanism by which information and control are propagated in biomolecules. It regulates ligand binding, chemical reactions, and conformational changes. An increasing level of experimental resolution and control over allosteric mechanisms promises a deeper understanding of the molecular basis for life and powerful new therapeutics.

View Article and Find Full Text PDF

Single-particle cryo-electron microscopy (cryo-EM) is a technique that takes projection images of biomolecules frozen at cryogenic temperatures. A major advantage of this technique is its ability to image single biomolecules in heterogeneous conformations. While this poses a challenge for data analysis, recent algorithmic advances have enabled the recovery of heterogeneous conformations from the noisy imaging data.

View Article and Find Full Text PDF

Cryo-electron microscopy (cryo-EM) has recently become a leading method for obtaining high-resolution structures of biological macromolecules. However, cryo-EM is limited to biomolecular samples with low conformational heterogeneity, where most conformations can be well-sampled at various projection angles. While cryo-EM provides single-molecule data for heterogeneous molecules, most existing reconstruction tools cannot retrieve the ensemble distribution of possible molecular conformations from these data.

View Article and Find Full Text PDF

Many sampling strategies commonly used in molecular dynamics, such as umbrella sampling and alchemical free energy methods, involve sampling from multiple states. The Multistate Bennett Acceptance Ratio (MBAR) formalism is a widely used way of recombining the resulting data. However, the error of the MBAR estimator is not well-understood: previous error analyses of MBAR assumed independent samples.

View Article and Find Full Text PDF

Dynamical spectral estimation is a well-established numerical approach for estimating eigenvalues and eigenfunctions of the Markov transition operator from trajectory data. Although the approach has been widely applied in biomolecular simulations, its error properties remain poorly understood. Here we analyze the error of a dynamical spectral estimation method called "the variational approach to conformational dynamics" (VAC).

View Article and Find Full Text PDF

The rise of machine learning (ML) has created an explosion in the potential strategies for using data to make scientific predictions. For physical scientists wishing to apply ML strategies to a particular domain, it can be difficult to assess in advance what strategy to adopt within a vast space of possibilities. Here we outline the results of an online community-powered effort to swarm search the space of ML strategies and develop algorithms for predicting atomic-pairwise nuclear magnetic resonance (NMR) properties in molecules.

View Article and Find Full Text PDF

Cryo-electron microscopy (cryo-EM) extracts single-particle density projections of individual biomolecules. Although cryo-EM is widely used for 3D reconstruction, due to its single-particle nature it has the potential to provide information about a biomolecule's conformational variability and underlying free-energy landscape. However, treating cryo-EM as a single-molecule technique is challenging because of the low signal-to-noise ratio (SNR) in individual particles.

View Article and Find Full Text PDF

One approach to analyzing the dynamics of a physical system is to search for long-lived patterns in its motions. This approach has been particularly successful for molecular dynamics data, where slowly decorrelating patterns can indicate large-scale conformational changes. Detecting such patterns is the central objective of the variational approach to conformational dynamics (VAC), as well as the related methods of time-lagged independent component analysis and Markov state modeling.

View Article and Find Full Text PDF

The protein hormone insulin exists in various oligomeric forms, and a key step in binding its cellular receptor is dissociation of the dimer. This dissociation process and its corresponding association process have come to serve as paradigms of coupled (un)folding and (un)binding more generally. Despite its fundamental and practical importance, the mechanism of insulin dimer dissociation remains poorly understood.

View Article and Find Full Text PDF

The Eigenvector Method for Umbrella Sampling (EMUS) [46] belongs to a popular class of methods in statistical mechanics which adapt the principle of stratified survey sampling to the computation of free energies. We develop a detailed theoretical analysis of EMUS. Based on this analysis, we show that EMUS is an efficient method for computing averages over arbitrary target distributions.

View Article and Find Full Text PDF

Understanding chemical mechanisms requires estimating dynamical statistics such as expected hitting times, reaction rates, and committors. Here, we present a general framework for calculating these dynamical quantities by approximating boundary value problems using dynamical operators with a Galerkin expansion. A specific choice of basis set in the expansion corresponds to the estimation of dynamical quantities using a Markov state model.

View Article and Find Full Text PDF

The cyanobacterial clock proteins KaiA, KaiB, and KaiC form a powerful system to study the biophysical basis of circadian rhythms, because an in vitro mixture of the three proteins is sufficient to generate a robust ∼24-h rhythm in the phosphorylation of KaiC. The nucleotide-bound states of KaiC critically affect both KaiB binding to the N-terminal domain (CI) and the phosphotransfer reactions that (de)phosphorylate the KaiC C-terminal domain (CII). However, the nucleotide exchange pathways associated with transitions among these states are poorly understood.

View Article and Find Full Text PDF

Umbrella sampling efficiently yields equilibrium averages that depend on exploring rare states of a model by biasing simulations to windows of coordinate values and then combining the resulting data with physical weighting. Here, we introduce a mathematical framework that casts the step of combining the data as an eigenproblem. The advantage to this approach is that it facilitates error analysis.

View Article and Find Full Text PDF

For many Markov chains of practical interest, the invariant distribution is extremely sensitive to perturbations of some entries of the transition matrix, but insensitive to others; we give an example of such a chain, motivated by a problem in computational statistical physics. We have derived perturbation bounds on the relative error of the invariant distribution that reveal these variations in sensitivity. Our bounds are sharp, we do not impose any structural assumptions on the transition matrix or on the perturbation, and computing the bounds has the same complexity as computing the invariant distribution or computing other bounds in the literature.

View Article and Find Full Text PDF