Publications by authors named "Erik T Dustrude"

G-protein-gated inwardly-rectifying K (GIRK) channels are targets of G-protein-signaling systems that inhibit cell excitability. GIRK channels exist as homotetramers (GIRK2 and GIRK4) or heterotetramers with nonfunctional homomeric subunits (GIRK1 and GIRK3). Although they have been implicated in multiple conditions, the lack of selective GIRK drugs that discriminate among the different GIRK channel subtypes has hampered investigations into their precise physiological relevance and therapeutic potential.

View Article and Find Full Text PDF

The peripherally expressed voltage-gated sodium Na1.7 (gene SCN9A) channel boosts small stimuli to initiate firing of pain-signaling dorsal root ganglia (DRG) neurons and facilitates neurotransmitter release at the first synapse within the spinal cord. Mutations in SCN9A produce distinct human pain syndromes.

View Article and Find Full Text PDF

Orexins (OX), also known as hypocretins, are excitatory neuropeptides with well-described roles in regulation of wakefulness, arousal, energy homeostasis, and anxiety. An additional and recently recognized role of OX is modulation of fear responses. We studied the OX neurons of the perifornical hypothalamus (PeF) which send projections to the amygdala, a region critical in fear learning and fear expression.

View Article and Find Full Text PDF

We previously reported that destruction of the small ubiquitin-like modifier (SUMO) modification site in the axonal collapsin response mediator protein 2 (CRMP2) was sufficient to selectively decrease trafficking of the voltage-gated sodium channel NaV1.7 and reverse neuropathic pain. Here, we further interrogate the biophysical nature of the interaction between CRMP2 and the SUMOylation machinery, and test the hypothesis that a rationally designed CRMP2 SUMOylation motif (CSM) peptide can interrupt E2 SUMO-conjugating enzyme Ubc9-dependent modification of CRMP2 leading to a similar suppression of NaV1.

View Article and Find Full Text PDF

Neurofibromatosis type 1 (NF1), a genetic disorder linked to inactivating mutations or a homozygous deletion of the Nf1 gene, is characterized by tumorigenesis, cognitive dysfunction, seizures, migraine, and pain. Omic studies on human NF1 tissues identified an increase in the expression of collapsin response mediator protein 2 (CRMP2), a cytosolic protein reported to regulate the trafficking and activity of presynaptic N-type voltage-gated calcium (Cav2.2) channels.

View Article and Find Full Text PDF

The neuronal collapsin response mediator protein 2 (CRMP2) undergoes several posttranslational modifications that codify its functions. Most recently, CRMP2 SUMOylation (addition of small ubiquitin like modifier (SUMO)) was identified as a key regulatory step within a modification program that codes for CRMP2 interaction with, and trafficking of, voltage-gated sodium channel NaV1.7.

View Article and Find Full Text PDF

Background And Purpose: N-type voltage-gated calcium (Ca 2.2) channels are critical determinants of increased neuronal excitability and neurotransmission accompanying persistent neuropathic pain. Although Ca 2.

View Article and Find Full Text PDF

Voltage-gated sodium channels are crucial determinants of neuronal excitability and signaling. Trafficking of the voltage-gated sodium channel NaV1.7 is dysregulated in neuropathic pain.

View Article and Find Full Text PDF

Neurofibromatosis type 1 (Nf1) is a progressive, autosomal disorder with a large degree of variability and severity of manifestations including neurological, cutaneous, ocular/orbital, orthopedic, and vascular abnormalities. Nearly half of Nf1 patients presents with cognitive impairment, specifically spatial learning deficits. These clinical manifestations suggest a global impairment of both central and peripheral nervous system functions in neurofibromatosis.

View Article and Find Full Text PDF

Six novel 3″-substituted (R)-N-(phenoxybenzyl) 2-N-acetamido-3-methoxypropionamides were prepared and then assessed using whole-cell, patch-clamp electrophysiology for their anticonvulsant activities in animal seizure models and for their sodium channel activities. We found compounds with various substituents at the terminal aromatic ring that had excellent anticonvulsant activity. Of these compounds, (R)-N-4'-((3″-chloro)phenoxy)benzyl 2-N-acetamido-3-methoxypropionamide ((R)-5) and (R)-N-4'-((3″-trifluoromethoxy)phenoxy)benzyl 2-N-acetamido-3-methoxypropionamide ((R)-9) exhibited high protective indices (PI=TD50/ED50) comparable with many antiseizure drugs when tested in the maximal electroshock seizure test to mice (intraperitoneally) and rats (intraperitoneally, orally).

View Article and Find Full Text PDF

The functionalized amino acid, lacosamide ((R)-2), and the α-aminoamide, safinamide ((S)-3), are neurological agents that have been extensively investigated and have displayed potent anticonvulsant activities in seizure models. Both compounds have been reported to modulate voltage-gated sodium channel activity. We have prepared a series of chimeric compounds, (R)-7-(R)-10, by merging key structural units in these two clinical agents, and then compared their activities with (R)-2 and (S)-3.

View Article and Find Full Text PDF

Approximately 60% of morphine is glucuronidated to morphine-3-glucuronide (M3G) which may aggravate preexisting pain conditions. Accumulating evidence indicates that M3G signaling through neuronal Toll-like receptor 4 (TLR4) may be central to this proalgesic signaling event. These events are known to include elevated neuronal excitability, increased voltage-gated sodium (NaV) current, tactile allodynia and decreased opioid analgesic efficacy.

View Article and Find Full Text PDF

We prepared 13 derivatives of N-(biphenyl-4'-yl)methyl (R)-2-acetamido-3-methoxypropionamide that differed in type and placement of a R-substituent in the terminal aryl unit. We demonstrated that the R-substituent impacted the compound's whole animal and cellular pharmacological activities. In rodents, select compounds exhibited excellent anticonvulsant activities and protective indices (PI=TD50/ED50) that compared favorably with clinical antiseizure drugs.

View Article and Find Full Text PDF

Voltage-gated sodium channel (NaV) trafficking is incompletely understood. Post-translational modifications of NaVs and/or auxiliary subunits and protein-protein interactions have been posited as NaV-trafficking mechanisms. Here, we tested if modification of the axonal collapsin response mediator protein 2 (CRMP2) by a small ubiquitin-like modifier (SUMO) could affect NaV trafficking; CRMP2 alters the extent of NaV slow inactivation conferred by the anti-epileptic (R)-lacosamide, implying NaV-CRMP2 functional coupling.

View Article and Find Full Text PDF

We have reported that compounds containing a biaryl linked unit (Ar-X-Ar') modulated Na(+) currents by promoting slow inactivation and fast inactivation processes and by inducing frequency (use)-dependent inhibition of Na(+) currents. These electrophysiological properties have been associated with the mode of action of several antiepileptic drugs. In this study, we demonstrate that the readily accessible (biphenyl-4-yl)methylammonium chlorides (compound class B) exhibited a broad range of anticonvulsant activities in animal models, and in the maximal electroshock seizure test the activity of (3'-trifluoromethoxybiphenyl-4-yl)methylammonium chloride (8) exceeded that of phenobarbital and phenytoin upon oral administration to rats.

View Article and Find Full Text PDF

Lacosamide ((R)-1) is a recently marketed, first-in-class, antiepileptic drug. Patch-clamp electrophysiology studies are consistent with the notion that (R)-1 modulates voltage-gated Na(+) channel function by increasing and stabilizing the slow inactivation state without affecting fast inactivation. The molecular pathway(s) that regulate slow inactivation are poorly understood.

View Article and Find Full Text PDF

Four compounds that contained the N-benzyl 2-amino-3-methoxypropionamide unit were evaluated for their ability to modulate Na(+) currents in catecholamine A differentiated CAD neuronal cells. The compounds differed by the absence or presence of either a terminal N-acetyl group or a (3-fluoro)benzyloxy moiety positioned at the 4'-benzylamide site. Analysis of whole-cell patch-clamp electrophysiology data showed that the incorporation of the (3-fluoro)benzyloxy unit, to give the (3-fluoro)benzyloxyphenyl pharmacophore, dramatically enhanced the magnitude of Na(+) channel slow inactivation.

View Article and Find Full Text PDF