Introduction: Pulmonary fibrosis is a destructive, progressive disease that dramatically reduces life quality of patients, ultimately leading to death. Therapeutic regimens for pulmonary fibrosis have shown limited benefits, hence justifying the efforts to evaluate the outcome of alternative treatments.
Methods: Using a mouse model of bleomycin (BLM)-induced lung fibrosis, in the current work we asked whether treatment with pro-resolution molecules, such as pro-resolving lipid mediators (SPMs) could ameliorate pulmonary fibrosis.
Microangiopathy may worsen the clinical outcome of Chagas disease. Given the obstacles to investigating the dynamics of inflammation and angiogenesis in heart tissues parasitized by , here we used intravital microscopy (IVM) to investigate microcirculatory alterations in the hamster cheek pouch (HCP) infected by green fluorescent protein-expressing (GFP-). IVM performed 3 days post-infection (3 dpi) consistently showed increased baseline levels of plasma extravasation.
View Article and Find Full Text PDFAngiogenesis is both a physiological and a pathological process of great complexity, which is difficult to measure objectively and automatically. The hamster cheek pouch (HCP) prepared for intravital-microscopy (IVM) has been used to characterize microvascular functions in many studies and was chosen to investigate microvascular characteristics observed in normal non-infected hamsters as compared to those HCPs parasitized by Trypanosoma cruzi. Images of HCPs captured at IVM were subjected to computer based measurements of angiogenesis and histamine-induced macromolecular (FITC-dextran) leakage with an image segmentation approach that has the capacity to discriminate between fluorescence emitted by macromolecular tracers inside the vasculature and in the extravascular space.
View Article and Find Full Text PDFInhibitors of serine peptidases (ISPs) expressed by Leishmania major enhance intracellular parasitism in macrophages by targeting neutrophil elastase (NE), a serine protease that couples phagocytosis to the prooxidative TLR4/PKR pathway. Here we investigated the functional interplay between ISP-expressing L. major and the kallikrein-kinin system (KKS).
View Article and Find Full Text PDFComplement and the kallikrein-kinin cascade system are both activated in injured tissues. Little is known about their partnership in the immunopathogenesis of Chagas disease, the chronic infection caused by the intracellular protozoan Trypanosoma cruzi. In this study, we show that pharmacological targeting of the C5a receptor (C5aR) or the bradykinin B2 receptor (B2R) inhibited plasma leakage in hamster cheek pouch topically exposed to tissue culture trypomastigotes (TCTs).
View Article and Find Full Text PDFChronic chagasic myocarditis (CCM) depends on Trypanosoma cruzi persistence in the myocardium. Studies of the proteolytic mechanisms governing host/parasite balance in peripheral sites of T. cruzi infection revealed that tissue culture trypomastigotes (TCTs) elicit inflammatory edema and stimulate protective type-1 effector T cells through the activation of the kallikrein-kinin system.
View Article and Find Full Text PDFObjective: Ischemic preconditioning and some drugs can protect tissues from injury by preserving microcirculation. This study evaluated vascular permeability in a hamster cheek pouch preparation using either short ischemic periods or bradykinin as preconditioning stimuli followed by 30 min of ischemia/reperfusion.
Method: Sixty-six male hamsters were divided into 11 groups: five combinations of different ischemic frequencies and durations (one, three or five shorts periods of ischemia, separated by one or five minutes) with 10 min intervals between the ischemic periods, followed by 30 min ischemia/reperfusion; three or five 1 min ischemic periods with 10 min intervals between them followed by the topical application of histamine (2 µM); bradykinin (400 nM) followed by 30 min of ischemia/reperfusion; and three control groups (30 min of ischemia/reperfusion or histamine or bradykinin by themselves).
Experiments were designed to determine if the vasodilatory peptides maxadilan and pituitary adenylate cyclase-activating peptide (PACAP-38) may cause plasma leakage through activation of leukocytes and to what extent these effects could be due to PAC1 and CXCR1/2 receptor stimulation. Intravital microscopy of hamster cheek pouches utilizing FITC-dextran and rhodamine, respectively, as plasma and leukocyte markers was used to measure arteriolar diameter, plasma leakage and leukocyte accumulation in a selected area (5mm(2)) representative of the hamster cheek pouch microcirculation. Our studies showed that the sand fly vasodilator maxadilan and PACAP-38 induced arteriolar dilation, leukocyte accumulation and plasma leakage in postcapillary venules.
View Article and Find Full Text PDFBackground And Purpose: Independent studies in experimental models of Trypanosoma cruzi appointed different roles for endothelin-1 (ET-1) and bradykinin (BK) in the immunopathogenesis of Chagas disease. Here, we addressed the hypothesis that pathogenic outcome is influenced by functional interplay between endothelin receptors (ET(A)R and ET(B)R) and bradykinin B(2) receptors (B(2)R).
Experimental Approach: Intravital microscopy was used to determine whether ETR/B(2)R drives the accumulation of rhodamine-labelled leucocytes in the hamster cheek pouch (HCP).
Porphyromonas gingivalis, a Gram-negative bacterium that causes periodontitis, activates the kinin system via the cysteine protease R-gingipain. Using a model of buccal infection based on P. gingivalis inoculation in the anterior mandibular vestibule, we studied whether kinins released by gingipain may link mucosal inflammation to T cell-dependent immunity through the activation of bradykinin B(2) receptors (B(2)R).
View Article and Find Full Text PDFPrevious analysis of the endogenous innate signals that steer T cell-dependent immunity in mice acutely infected by the protozoan Trypanosoma cruzi revealed that bradykinin (BK) or lysyl-BK, i.e., the short-lived peptides excised from plasma-borne kininogens through the activity of cruzipain, induces dendritic cell maturation via BK B(2) receptors (B(2)R).
View Article and Find Full Text PDFObjectives: Experiments were designed to determine if salivary gland homogenates (SGH) of the sand fly Lutzomyia longipalpis, the vasodilatory peptides maxadilan and pituitary adenylate cyclase-activating peptide (PACAP-38) may cause plasma leakage and to what extent these effects could be due to PAC1 receptor stimulation.
Methods: Using FITC-dextran as a plasma marker, intravital microscopy of the hamster cheek pouch (HCP) and a digital camera were used to assess arteriolar diameter and fluorescence of a selected area (5 mm(2)) representative of the HCP microcirculation.
Results: Cheek pouches prepared for intravital microscopy and exposed to topical application of SGH, maxadilan or PACAP-38 developed maximal dilation of arterioles in the range of 20-60 mum within 10 min, and this effect lasted for 30-90 min.
Tissue injury by pathogens induces a stereotyped inflammatory response that alerts the innate immune system of the potential threat to host integrity. Here, we review knowledge emerging from investigations of the role of the kinin system in the mechanisms that link innate to the adaptive phase of immunity. Progress in this field started with results demonstrating that bradykinin is an endogenous danger signal that induces dendritic cell (DC) maturation via G protein-coupled bradykinin B2 receptors (B2R).
View Article and Find Full Text PDFWe have previously reported that exogenous bradykinin activates immature dendritic cells (DCs) via the bradykinin B(2) receptor (B(2)R), thereby stimulating adaptive immunity. In this study, we show that these premises are met in a model of s.c.
View Article and Find Full Text PDFKinins, the vasoactive peptides proteolytically liberated from kininogens, were recently recognized as signals alerting the innate immune system. Here we demonstrate that Leishmania donovani and Leishmania chagasi, two etiological agents of visceral leishmaniasis (VL), activate the kinin system. Intravital microscopy in the hamster cheek pouch showed that topically applied promastigotes induced macromolecular leakage (FITC-dextran) through postcapillary venules.
View Article and Find Full Text PDFWe studied changes in arteriolar and venular diameters and macromolecular leakage altered by ischemia/reperfusion (I/R) and topically applied histamine after I/R and how these changes were modulated by cromakalim (KATP-channel opener) and glibenclamide (KATP-channel blocker). Golden hamsters were prepared for intravital microscopy of the cheek pouch. Ischemia was induced by an inflatable silicon rubber cuff mounted around the neck of the cheek pouch prepared for intravital microscopy.
View Article and Find Full Text PDF