Hydrogels are a class of biomaterials that can provide a three-dimensional (3D) environment capable of mimicking the extracellular matrix of native tissues. In this chapter, we present a method to generate electrospun nanofibers for the purpose of reinforcing hydrogels. The addition of electrospun fibers can be used to improve the mechanical properties of hydrogels and broaden their range of applications.
View Article and Find Full Text PDFThe field of small-diameter vascular grafts remains a challenge for biomaterials scientists. While decades of research have brought us much closer to developing biomimetic materials for regenerating tissues and organs, the physiological challenges involved in manufacturing small conduits that can transport blood while not inducing an immune response or promoting blood clots continue to limit progress in this area. In this short review, we present some of the most recent methods and advancements made by researchers working in the field of small-diameter vascular grafts.
View Article and Find Full Text PDFA plethora of biomaterials for heart repair are being tested worldwide for potential clinical application. These therapeutics aim to enhance the quality of life of patients with heart disease using various methods to improve cardiac function. Despite the myriad of therapeutics tested, only a minority of these studied biomaterials have entered clinical trials.
View Article and Find Full Text PDFHeart disease remains the leading cause of worldwide mortality. Although the last decades have broadened our understanding of the biology behind the pathologies of heart disease, systems capable of mimicking disease progression and abnormal heart function using human cells remain elusive. In this contribution, an open-access electromechanical system (BEaTS-β) capable of mimicking the environment of cardiac disease is reported.
View Article and Find Full Text PDFBioprinting has rapidly progressed over the past decade. One branch of bioprinting known as bioprinting has benefitted considerably from innovations in biofabrication. Unlike bioprinting, bioprinting allows for biomaterials to be printed directly into or onto the target tissue/organ, eliminating the need to transfer pre-made three-dimensional constructs.
View Article and Find Full Text PDFBiomaterials are scaffolds designed to mimic the extracellular matrix and stimulate tissue repair. Biomaterial therapies have shown promise for improving wound healing in cardiac tissue after ischemic injury. An unintentional consequence of biomaterial delivery may be the stimulation of inflammation through recruitment of circulating monocytes into the tissue.
View Article and Find Full Text PDFWe report the development, as well as the and testing, of a sprayable nanotherapeutic that uses surface engineered custom-designed multiarmed peptide grafted nanogold for on-the-spot coating of an infarcted myocardial surface. When applied to mouse hearts, 1 week after infarction, the spray-on treatment resulted in an increase in cardiac function (2.4-fold), muscle contractility, and myocardial electrical conductivity.
View Article and Find Full Text PDFDysfunction of the cardiac sympathetic nervous system contributes to the development of cardiovascular diseases including ischemia, heart failure, and arrhythmias. Molecular imaging probes such as -[I]iodobenzylguanidine have demonstrated the utility of assessing neuronal integrity by targeting norepinephrine transporter (NET, uptake-1). However, current radiotracers can report only on innervation due to suboptimal kinetics and lack sensitivity to NET in rodents, precluding mechanistic studies in these species.
View Article and Find Full Text PDFThe goal of this study was to develop strategies to localize human collagen-based hydrogels within an infarcted mouse heart, as well as analyze its impact on endogenous extracellular matrix (ECM) remodeling. Collagen is a natural polymer that is abundantly used in bioengineered hydrogels because of its biocompatibility, cell permeability, and biodegradability. However, without the use of tagging techniques, collagen peptides derived from hydrogels can be difficult to differentiate from the endogenous ECM within tissues.
View Article and Find Full Text PDFPurpose Of Review: This review describes the latest advances in cell therapy, biomaterials and 3D bioprinting for the treatment of cardiovascular disease.
Recent Findings: Cell therapies offer the greatest benefit for patients suffering from chronic ischemic and nonischemic cardiomyopathy. Rather than replacing lost cardiomyocytes, the effects of most cell therapies are mediated by paracrine signalling, mainly through the induction of angiogenesis and immunomodulation.
Biofilm formation in living organisms is associated to tissue and implant infections, and it has also been linked to the contribution of antibiotic resistance. Thus, understanding biofilm development and being able to mimic such processes is vital for the successful development of antibiofilm treatments and therapies. Several decades of research have contributed to building the foundation for developing and biofilm models.
View Article and Find Full Text PDFRapid synthesis of nanomaterials in scalable quantities is critical for accelerating the discovery and commercial translation of nanoscale-based technologies. The synthesis of metal nanogold and silver in volumes larger than 100 mL is not automatized and might require of the use of harsh conditions that in most cases is detrimental for the production of nanoparticles with reproducible size distributions. In this work, we present the development and optimization of an open-access low-cost NanoParticle Flow Synthesis System (NPFloSS) that allows for the rapid preparation of volumes of up to 1 L of gold and silver nanoparticle aqueous solutions.
View Article and Find Full Text PDFCells Tissues Organs
September 2022
Cardiovascular diseases are the leading cause of mortality worldwide. Given the limited endogenous regenerative capabilities of cardiac tissue, patient-specific anatomy, challenges in treatment options, and shortage of donor tissues for transplantation, there is an urgent need for novel approaches in cardiac tissue repair. 3D bioprinting is a technology based on additive manufacturing which allows for the design of precisely controlled and spatially organized structures, which could possibly lead to solutions in cardiac tissue repair.
View Article and Find Full Text PDFA novel strategy is needed for treating nonhealing wounds, which is able to simultaneously eradicate pathogenic bacteria and promote tissue regeneration. This would improve patient outcome and reduce the number of lower limb amputations. In this work, we present a multifunctional therapeutic approach able to control bacterial infections, provide a protective barrier to a full-thickness wound, and improve wound healing in a clinically relevant animal model.
View Article and Find Full Text PDFInjectable hydrogels are a promising method to enhance repair in the heart after myocardial infarction (MI). However, few studies have compared different strategies for the application of biomaterial treatments. In this study, we use a clinically relevant mouse MI model to assess the therapeutic efficacy of different treatment protocols for intramyocardial injection of a recombinant human collagen III (rHCIII) thermoresponsive hydrogel.
View Article and Find Full Text PDFAs cell therapies emerged, it was quickly realized that pro-regenerative cells directly injected into injured tissue struggled within the inflammatory microenvironment. By using microencapsulation, i.e.
View Article and Find Full Text PDF3D printing was used to develop an open access device capable of simultaneous electrical and mechanical stimulation of human induced pluripotent stem cells in 6-well plates. The device was designed using Computer-Aided Design (CAD) and 3D printed with autoclavable, FDA-approved materials. The compact design of the device and materials selection allows for its use inside cell incubators working at high humidity without the risk of overheating or corrosion.
View Article and Find Full Text PDFWhile cell therapy is emerging as a promising option for patients with ischemic cardiomyopathy (ICM), the influence of advanced donor age and a history of ischemic injury on the reparative performance of these cells are not well defined. As such, intrinsic changes that result from advanced donor age and ischemia are explored in hopes of identifying a molecular candidate capable of restoring the lost reparative potency of heart explant-derived cells (EDCs) used in cell therapy. EDCs were cultured from myocardial biopsies obtained from young or old mice 4 weeks after randomization to experimental myocardial infarction or no intervention.
View Article and Find Full Text PDFOutflow tract abnormalities are the most frequent congenital heart defects. These are due to the absence or dysfunction of the two main cell types, i.e.
View Article and Find Full Text PDFDespite regenerative medicine (RM) being one of the hottest topics in biotechnology for the past 3 decades, it is generally acknowledged that the field's performance at the bedside has been somewhat disappointing. This may be linked to the novelty of these technologies and their disruptive nature, which has brought an increasing level of complexity to translation. Therefore, we look at how the historical development of the RM field has changed the translational strategy.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2019
Despite the success of current therapies for acute myocardial infarction (MI), many patients still develop adverse cardiac remodeling and heart failure. With the growing prevalence of heart failure, a new therapy is needed that can prevent remodeling and support tissue repair. Herein, we report on injectable recombinant human collagen type I (rHCI) and type III (rHCIII) matrices for treating MI.
View Article and Find Full Text PDFCoronary artery disease is a leading cause of death in developed nations. As the disease progresses, myocardial infarction can occur leaving areas of dead tissue in the heart. To compensate, the body initiates its own repair/regenerative response in an attempt to restore function to the heart.
View Article and Find Full Text PDFIn many diseases, tissue regeneration is compromised and/or insufficient to restore tissue/organ function. Therefore, novel regenerative therapies are being developed to enhance resident and transplanted cell proliferation and functional differentiation. Numerous biomaterials engineered to include nanocomponents have emerged as promising candidates to fulfil the need of mimicking the properties of the healthy extracellular matrix.
View Article and Find Full Text PDF