The pursuit of increased efficiency of photoelectric energy conversion through optimized semiconductor structures remains highly competitive, with current results yet to align with broad expectations. In this study, we discover a significant enhancement in photocurrent performance of a p-3C-SiC nanothin film on p-Si/n-Si double junction (DJ) heterostructure that integrates p-3C-SiC/p-Si heterojunction and p-Si/n-Si homojunction. The vertical photocurrent (VPC) and vertical photoresponsivity exhibit a substantial enhancement in the DJ heterostructure, surpassing by a maximum of 43-fold compared to the p-3C-SiC/n-Si single junction (SJ) counterpart.
View Article and Find Full Text PDFSurface ion traps are among the most promising technologies for scaling up quantum computing machines, but their complicated multi-electrode geometry can make some tasks, including compensation for stray electric fields, challenging both at the level of modeling and of practical implementation. Here we demonstrate the compensation of stray electric fields using a gradient descent algorithm and a machine learning technique, which trained a deep learning network. We show automated dynamical compensation tested against induced electric charging from UV laser light hitting the chip trap surface.
View Article and Find Full Text PDFIt is critical to investigate the charge carrier gradient generation in semiconductor junctions with an asymmetric configuration, which can open a new platform for developing lateral photovoltaic and self-powered devices. This paper reports the generation of a charge carrier gradient in a 3C-SiC/Si heterojunction with an asymmetric electrode configuration. 3C-SiC/Si heterojunction devices with different electrode widths were illuminated by laser beams (wavelengths of 405, 521, and 637 nm) and a halogen bulb.
View Article and Find Full Text PDFIsotope selective optical excitation of atoms is important for experiments with neutral atoms, metrology, and work with trapped ions, including quantum information processing. Polarization-enhanced absorption spectroscopy is used to frequency stabilize a tunable external cavity laser diode system at 398.9 nm for isotope selective photoionization of neutral Yb atoms.
View Article and Find Full Text PDFHere we present a cost-effective multichannel optomechanical switch and software proportional-integral-derivative (PID) controller system for locking multiple lasers to a single-channel commercial wavemeter. The switch is based on a rotating cylinder that selectively transmits one laser beam at a time to the wavemeter. The wavelength is read by the computer, and an error signal is output to the lasers to correct wavelength drifts every millisecond.
View Article and Find Full Text PDFSingle-crystalline silicon carbide (3C-SiC) on the Si substrate has drawn significant attention in recent years due to its low wafer cost and excellent mechanical, chemical, and optoelectronic properties. However, the applications of the structure have primarily been focused on piezoresistive and pressure sensors, bio-microelectromechanical system, and photonics. Herein, we report another promising application of the heterostructure as a laser spot position-sensitive detector (PSD) based on the lateral photovoltaic effect (LPE) under nonuniform optical illuminations at zero-bias conditions.
View Article and Find Full Text PDFForces drive all physical interactions. High-sensitivity measurement of the effect of forces enables the quantitative investigation of physical phenomena. Laser-cooled trapped atomic ions are a well-controlled quantum system whose low mass, strong Coulomb interaction, and readily detectable fluorescence signal make them a favorable platform for precision metrology.
View Article and Find Full Text PDFThis letter reports a giant opto-piezoresistive effect in p-3C-SiC/p-Si heterostructure under visible-light illumination. The p-3C-SiC/p-Si heterostructure has been fabricated by growing a 390 nm p-type 3C-SiC on a p-type Si substrate using the low pressure chemical vapor deposition (LPCVD) technique. The gauge factor of the heterostructure was found to be 28 under a dark condition; however, it significantly increased to about -455 under illumination of 635 nm wavelength at 3.
View Article and Find Full Text PDFTrapped ions are one of the most promising approaches for the realization of a universal quantum computer. Faster quantum logic gates could dramatically improve the performance of trapped-ion quantum computers, and require the development of suitable high repetition rate pulsed lasers. Here we report on a robust frequency upconverted fiber laser based source, able to deliver 2.
View Article and Find Full Text PDFMany channel arbitrary pulse sequence generation is required for the electro-optic reconfiguration of optical waveguide networks in Lithium Niobate. Here we describe a scalable solution to the requirement for mid-power bipolar parallel outputs, based on pulse patterns generated by an externally clocked field programmable gate array. Positive and negative pulses can be generated at repetition rates up to 80 MHz with pulse width adjustable in increments of 1.
View Article and Find Full Text PDFAbsorption imaging has played a key role in the advancement of science from van Leeuwenhoek's discovery of red blood cells to modern observations of dust clouds in stellar nebulas and Bose-Einstein condensates. Here we show the first absorption imaging of a single atom isolated in a vacuum. The optical properties of atoms are thoroughly understood, so a single atom is an ideal system for testing the limits of absorption imaging.
View Article and Find Full Text PDFTrapped ions are a leading system for realizing quantum information processing (QIP). Most of the technologies required for implementing large-scale trapped-ion QIP have been demonstrated, with one key exception: a massively parallel ion-photon interconnect. Arrays of microfabricated phase Fresnel lenses (PFL) are a promising interconnect solution that is readily integrated with ion trap arrays for large-scale QIP.
View Article and Find Full Text PDFContinuous and pulsed quantum Zeno effects were observed using a 87Rb Bose-Einstein condensate. Oscillations between two ground hyperfine states of a magnetically trapped condensate, externally driven at a transition rate omega(R), were suppressed by destructively measuring the population in one of the states with resonant light. The suppression of the transition rate in the two-level system was quantified for pulsed measurements with a time interval deltat between pulses and continuous measurements with a scattering rate gamma.
View Article and Find Full Text PDFWe have observed parametric generation and amplification of ultracold atom pairs. A 87Rb Bose-Einstein condensate was loaded into a one-dimensional optical lattice with quasimomentum k0 and spontaneously scattered into two final states with quasimomenta k1 and k2 . Furthermore, when a seed of atoms was first created with quasimomentum k1 we observed parametric amplification of scattered atoms pairs in states k1 and k2 when the phase-matching condition was fulfilled.
View Article and Find Full Text PDFA systematic shift of the photon recoil momentum due to the index of refraction of a dilute gas of atoms has been observed. The recoil frequency was determined with a two-pulse light grating interferometer using near-resonant laser light. The results show that the recoil momentum of atoms caused by the absorption of a photon is n variant Planck's k, where n is the index of refraction of the gas and k is the vacuum wave vector of the photon.
View Article and Find Full Text PDFThe interaction of short and strong laser pulses with an atomic Bose-Einstein condensate is found to generate patterns of recoiling atoms that are different from those seen in previous light-scattering experiments. This phenomenon can only be explained by optical stimulation, showing that the previous description of superradiance as atomic stimulation is incomplete and that matter-wave amplification in Bose-Einstein condensates is suppressed at short times. Our experiments clarify the nature of bosonic stimulation in the four-wave mixing of light and atoms.
View Article and Find Full Text PDF