Publications by authors named "Erik Stang"

Structure-activity studies of 4-substituted-2,5-dimethoxyphenethylamines led to the discovery of 2,5-dimethoxy-4-thiotrifluoromethylphenethylamines, including CYB210010, a potent and long-acting serotonin 5-HT receptor agonist. CYB210010 exhibited high agonist potency at 5-HT and 5-HT receptors, modest selectivity over 5-HT, 5-HT, 5-HT, and adrenergic α receptors, and lacked activity at monoamine transporters and over 70 other proteins. CYB210010 (0.

View Article and Find Full Text PDF

Macrocyclic pyrrolobenzodiazepine dimers were designed and evaluated for use as antibody-drug conjugate payloads. Initial structure-activity exploration established that macrocyclization could increase the potency of PBD dimers compared with non-macrocyclic analogs. Further optimization overcame activity-limiting solubility issues, leading to compounds with highly potent (picomolar) activity against several cancer cell lines.

View Article and Find Full Text PDF

Bivalent heterodimeric IAP antagonists that incorporate (R)-tetrahydroisoquinoline in the P3' subunit show high affinity for the BIR2 domain and demonstrated potent IAP inhibitory activities in biochemical and cellular assays. Potent in vivo efficacy was observed in a variety of human tumor xenograft models. The bivalent heterodimeric molecule 3 with a P3-P3' benzamide linker induced pharmacodynamic markers of apoptosis and was efficacious when administered intravenously at a dose of 1mg/kg to mice harboring A875 human melanoma tumors.

View Article and Find Full Text PDF

Traditionally, C-H oxidation reactions install oxidized functionality onto a preformed molecular skeleton, resulting in a local molecular change. The use of C-H activation chemistry to construct complex molecular scaffolds is a new area with tremendous potential in synthesis. We report a Pd(II)/bis-sulfoxide-catalyzed dehydrogenative Diels-Alder reaction that converts simple terminal olefins into complex cycloadducts in a single operation.

View Article and Find Full Text PDF

Among the frontier challenges in chemistry in the twenty-first century are the interconnected goals of increasing synthetic efficiency and diversity in the construction of complex molecules. Oxidation reactions of C-H bonds, particularly when applied at late stages of complex molecule syntheses, hold special promise for achieving both these goals. Here we report a late-stage C-H oxidation strategy in the total synthesis of 6-deoxyerythronolide B (6-dEB), the aglycone precursor to the erythromycin antibiotics.

View Article and Find Full Text PDF