Publications by authors named "Erik S Runkle"

Despite being outside of the traditionally defined photosynthetically active radiation (PAR) waveband (400-700 nm), far-red (FR; 700-799 nm) light can increase photosynthesis and induce shade-avoidance responses, which increases light interception and thus, whole-plant growth. However, it is unclear how the promotion of growth from FR light depends on PAR wavebands and specifically how the substitution of red light (600-699 nm) with green light (500-599 nm) influences the efficacy of FR light on increasing shoot biomass accumulation. To determine this, we grew red- and green-leaf lettuce (Lactuca sativa) at a fixed total photon flux density (PFD) with 12 different fractions of red, green, and FR light and the same PFD of blue (400-499 nm) light.

View Article and Find Full Text PDF

Cultivation studies in specialty crop optimization utilize models to estimate the fresh and dry mass yield. However, the spectral distribution and photon flux density affect plant photosynthetic rate and morphology, which is usually not incorporated in plant growth models. In this study, using data for indoor-grown lettuce () cultivated under different light spectra, a mathematical model that incorporates these effects is presented.

View Article and Find Full Text PDF

For indoor crop production, blue + red light-emitting diodes (LEDs) have high photosynthetic efficacy but create pink or purple hues unsuitable for workers to inspect crops. Adding green light to blue + red light forms a broad spectrum (white light), which is created by: phosphor-converted blue LEDs that cast photons with longer wavelengths, or a combination of blue, green, and red LEDs. A broad spectrum typically has a lower energy efficiency than dichromatic blue + red light but increases color rendering and creates a visually pleasing work environment.

View Article and Find Full Text PDF

Although green (G, 500 to 600 nm) and far-red (FR, 700 to 800 nm) light play important roles in regulating plant growth and development, they are often considered less useful at stimulating photosynthesis than red (R, 600 to 700 nm) and blue (B, 400 to 500 nm) light. Based on this perception, approaches to modifying the transmission of greenhouse glazing materials include (1) conversion of G photons from sunlight into R photons and (2) exclusion of the near-infrared (>700 nm) fraction of sunlight. We evaluated these approaches using simulated scenarios with light-emitting diodes to determine how partial and complete substitution of G with R light and exclusion of FR light affected the growth of lettuce and tomato grown indoors.

View Article and Find Full Text PDF

Covering greenhouses and agricultural fields with photovoltaics has the potential to create multipurpose agricultural systems that generate revenue through conventional crop production as well as sustainable electrical energy. In this work, we evaluate the effects of wavelength-selective cutoffs of visible and near-infrared (biologically active) radiation using transparent photovoltaic (TPV) absorbers on the growth of three diverse, representative, and economically important crops: petunia, basil, and tomato. Despite the differences in TPV harvester absorption spectra, photon transmission of photosynthetically active radiation (PAR; 400-700 nm) is the most dominant predictor of crop yield and quality.

View Article and Find Full Text PDF

Improving photosynthesis and light capture increases crop yield and paves a sustainable way to meet the growing global food demand. Here we introduce a spectral-shifting microphotonic thin film as a greenhouse envelope that can be scalably manufactured for augmented photosynthesis. By breaking the intrinsic propagation symmetry of light, the photonic microstructures can extract 89% of the internally generated light and deliver most of that in one direction towards photosynthetic organisms.

View Article and Find Full Text PDF

The photon flux density (PFD) and spectrum regulate the growth, quality attributes, and postharvest physiology of leafy vegetables grown indoors. However, limited information is available on how a photon spectrum enriched with a broad range of different wavebands regulates these factors. To determine this, we grew baby-leaf lettuce 'Rouxai' under a PFD of 200 µmol m s provided by warm-white (WW; control) light-emitting diodes (LEDs) supplemented with either 30 µmol m s of ultraviolet-A (+UV30) or 50 µmol m s of blue (+B50), green (+G50), red (+R50), or WW (+WW50) light.

View Article and Find Full Text PDF

Lighting is typically static for indoor production of leafy greens. However, temporal spectrum differentiation for distinct growth phases can potentially control age-specific desirable traits. Spectral effects can be persistent yet dynamic as plants mature, necessitating characterization of time-dependent responses.

View Article and Find Full Text PDF

Photoperiodic lighting can promote flowering of long-day plants (LDPs) and inhibit flowering of short-day plants (SDPs). Red (R) and far-red (FR) light regulate flowering through phytochromes, whereas blue light does so primarily through cryptochromes. In contrast, the role of green light in photoperiodic regulation of flowering has been inconsistent in previous studies.

View Article and Find Full Text PDF

Arrays of blue (B, 400-500 nm) and red (R, 600-700 nm) light-emitting diodes (LEDs) used for plant growth applications make visual assessment of plants difficult compared to a broad (white, W) spectrum. Although W LEDs are sometimes used in horticultural lighting fixtures, little research has been published using them for sole-source lighting. We grew seedlings of begonia (Begonia ×semperflorens), geranium (Pelargonium ×horturum), petunia (Petunia ×hybrida), and snapdragon (Antirrhinum majus) at 20°C under six sole-source LED lighting treatments with a photosynthetic photon flux density (PPFD) of 160 μmol∙m-2∙s-1 using B (peak = 447 nm), green (G, peak = 531 nm), R (peak = 660 nm), and/or mint W (MW, peak = 558 nm) LEDs that emitted 15% B, 59% G, and 26% R plus 6 μmol∙m-2∙s-1 of far-red radiation.

View Article and Find Full Text PDF

Phalaenopsis orchids are among the most valuable potted flowering crops commercially produced throughout the world because of their long flower life and ease of crop scheduling to meet specific market dates. During commercial production, Phalaenopsis are usually grown at an air temperature > or =28 degrees C to inhibit flower initiation, and a cooler night than day temperature regimen (e.g.

View Article and Find Full Text PDF

Intermediate-day plants (IDP) flower most rapidly and completely under intermediate photoperiods (e.g., 12-14 h of light), but few species have been identified and their flowering responses are not well understood.

View Article and Find Full Text PDF